Soal Dan Pembahasan Dimensi Tiga



Dimensi Tiga 40 Soal Dan Pembahasan

Pembahasan Soal UN Dimensi Tiga

Pembahasan soal Ujian Nasional (UN) Matematika IPA jenjang pendidikan SMA untuk pokok bahasan Dimensi Tiga yang meliputi jarak atau sudut antara titik, garis dan bidang. Berikut beberapa konsep yang digunakan pada pembahasan :

1. UN 2008

Diketahui kubus ABCD.EFGH dengan panjang rusuk 8 cm. Jarak titik H ke garis AC adalah ... A.  8√3 B.  8√2 C.  4√6 D.  4√3 E.  4√2

Pembahasan :

Jarak titik H ke garis AC adalah OH. rusuk = a = 8 OH = \(\mathrm{\frac{a}{2}}\)√6 = \(\frac{8}{2}\)√6 = 4√6

Jawaban : C

2. UN 2010

Diketahui kubus ABCD.EFGH dengan panjang rusuk 4 cm. Titik P adalah titik potong AH dan ED dan titik Q adalah titik potong FH dan EG. Jarak titik B ke garis PQ adalah ... A.  √22  cm B.  √21  cm C.  2√5  cm D.  √19  cm E.  3√2  cm

Pembahasan :

Jarak titik B ke garis PQ adalah BR. rusuk = a = 4 BP = BQ = \(\mathrm{\frac{a}{2}}\)√6 = \(\frac{4}{2}\)√6 = 2√6 PQ = \(\mathrm{\sqrt{PS^{2}+SQ^{2}}=\sqrt{2^{2}+2^{2}}=2\sqrt{2}}\) BPQ sama kaki sehingga : PR = RQ = \(\frac{1}{2}\)PQ = \(\frac{1}{2}\)(2√2) = √2 Perhatikan segitiga BPR siku-siku di R BR = \(\mathrm{\sqrt{BP^{2}-PR^{2}}}\)

BR = \(\mathrm{\sqrt{\left (2\sqrt{6}  \right )^{2}-\left ( \sqrt{2} \right )^{2}}}\)

BR = \(\mathrm{\sqrt{22}}\)

Jawaban : A

3. UN 2011

Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. M adalah titik tengah EH. Jarak titik M ke AG adalah ... A.  4√6  cm B.  4√5  cm C.  4√3  cm D.  4√2  cm E.  4  cm

Pembahasan :

Jarak titik M ke garis AG adalah MO a = 8 Perhatikan bahwa garis MN dan AG berpotongan tegak lurus dan sama besar di titik O, sehingga MO = \(\frac{1}{2}\). MN

MO = \(\frac{1}{2}\). a√2

MO = \(\frac{1}{2}\). 8√2 MO = 4√2

Jawaban : D

4.  UN 2007

Diketahui kubus ABCD.EFGH dengan rusuk 6√3 cm. Jarak Bidang ACH dan EGB adalah ... A.  4√3  cm B.  2√3  cm C.  4  cm D.  6  cm E.  12  cm

Pembahasan :

Jarak bidang ACH dan EGB = jarak garis OH dan BR = jarak titik P dan Q  ⇒ PQ. rusuk = a = 6√3 OH = BR = \(\mathrm{\frac{a}{2}}\)√6 = 9√2 OR = a = 6√3 HF = a√2 = 6√6 HR = \(\frac{1}{2}\) × HF = 3√6 DF = a√3 = 18 Perhatikan bidang BDHF
OHRB adalah jajar genjang dengan alas OH dan tinggi PQ

Ingat : luas jajar genjang \(\mathrm{=alas\times tinggi}\)

Luas jajar genjang OHRB = 2 × luas ⊿ OHR OH × PQ = 2 × \(\frac{1}{2}\)×HR×OR OH × PQ = HR × OR 9√2 × PQ = 3√6 × 6√3 ⇒ PQ = 6 atau DP = PQ = QF = \(\frac{1}{3}\) × DF DP = PQ = QF = \(\frac{1}{3}\) × 18 ⇒ PQ = 6

Jawaban : D

5. UN 2009

Diketahui kubus ABCD.EFGH, panjang rusuk kubus adalah 12 cm. Titik P terletak pada perpanjangan rusuk DC sehingga CP : DP = 1 : 3. Jarak titik P dengan bidang BDHF adalah ... A.  6√2  cm B.  9√2  cm C.  12√2  cm D.  16√2  cm E.  18√2  cm

Pembahasan :

Jarak titik P ke bidang BDHF = jarak titik P ke garis BD  ⇒ PQ. rusuk = a = 12 CP : DP = 1 : 3  ⇒  DC : CP = 2 : 1 DC = 12  ⇒ CP = 6 DP = DC + CP = 12 + 6 =18 BD = a√2 = 12√2 Perhatikan segitiga BDP
Dengan menggunakan rumus luas segitiga diperoleh : \(\frac{1}{2}\) × BD × PQ = \(\frac{1}{2}\) × DP × BC  BD × PQ = DP × BC 12√2 × PQ = 18 × 12 ⇒ PQ = 9√2

Jawaban : B

6. UN 2012

Kubus ABCD.EFGH dengan rusuk 4 cm. Jarak titik H ke bidang ACF adalah ... A.  \(\frac{2}{3}\)√3  cm B.  \(\frac{4}{3}\)√3  cm C.  \(\frac{11}{3}\)√3  cm D.  \(\frac{8}{3}\)√3  cm E.  \(\frac{13}{3}\)√3  cm

Pembahasan :

Jarak titik H ke bidang ACF = jarak titik H ke garis OF = jarak titik H ke titik P  ⇒ HP. rusuk = a = 4 OF = OH = \(\mathrm{\frac{a}{2}}\)√6 = 2√6 FH = a√2 = 4√2 OQ = a = 4 Perhatikan segitiga OFH
HP dan OQ merupakan garis tinggi, sehingga dengan menggunakan rumus luas segitiga akan diperoleh persamaan sebagai berikut ; \(\frac{1}{2}\)×OF×HP = \(\frac{1}{2}\)×FH×OQ OF × HP = FH × OQ 2√6 × HP = 4√2 × 4 ⇒ HP = \(\mathrm{\frac{8}{3}}\)√3 HP = \(\mathrm{\frac{2}{3}}\) × HB

HP = \(\mathrm{\frac{2}{3}}\) × a√3

HP = \(\mathrm{\frac{2}{3}}\) × 4√3 HP = \(\mathrm{\frac{8}{3}}\)√3

Jawaban : D

7. UN 2013

Kubus ABCD.EFGH memiliki panjang rusuk 6 cm. Jarak titik B ke CE adalah ... A.  \(\frac{1}{2}\)√3  cm B.  \(\frac{1}{2}\)√6  cm C.  3√3  cm D.  2√6  cm E.  4√6  cm

Pembahasan :

Jarak B ke CE adalah BP a = 6 BC = a = 6 BE = a√2 = 6√2 CE = a√3 = 6√3 Perhatikan Δ BCE siku-siku di B
BP = \(\mathrm{\frac{BC\times BE}{CE}}\)

BP = \(\mathrm{\frac{6\times 6\sqrt{2}}{6\sqrt{3}}}\)

BP = 2√6 Jawaban : D

8. UN 2014

Diketahui limas beraturan T.ABCD dengan ABCD adalah persegi yang memiliki panjang AB = 4 dan TA = 6 cm. Jarak titik C ke garis AT = ... A.  \(\frac{1}{14}\)√14  cm B.  \(\frac{2}{3}\)√14  cm C.  \(\frac{3}{4}\)√14  cm D.  \(\frac{4}{3}\)√14  cm E.  \(\frac{3}{2}\)√14  cm

Pembahasan :

Jarak C ke AT adalah CP AT = CT = 6 AC = 4√2 Perhatikan  Δ ACT
AP = \(\mathrm{\frac{AT^{2}+AC^{2}-CT^{2}}{2\times AT}}\)

AP = \(\mathrm{\frac{6^{2}+\left ( 4\sqrt{2} \right )^{2}-6^{2}}{2\times 6}}\)

AP = \(\mathrm{\frac{8}{3}}\) Perhatikan Δ APC siku-siku di P CP = \(\mathrm{\sqrt{AC^{2}-AP^{2}}}\)

CP = \(\mathrm{\sqrt{\left ( 4\sqrt{2} \right )^{2}-\left ( \frac{8}{3} \right )^{2}}}\)

CP = \(\mathrm{\frac{4}{3}\sqrt{14}}\)

Jawaban : D

9. UN 2004

Panjang rusuk kubus ABCD.EFGH adalah 6 cm. Jika S adalah titik potong EG dan FH, maka jarak DH ke AS adalah ... cm. A.  2√3 B.  4 C.  3√2 D.  2√6 E.  6

Pembahasan :

Jarak DH ke AS adalah HS, karena HS tegak lurus terhadap DH dan AS. rusuk = a = 6 HF = a√2 = 6√2 HS = \(\frac{1}{2}\). HF

HS = \(\frac{1}{2}\). 6√2

HS = 3√2 Jawaban : C

10. UN 2007

Diketahui sebuah kubus ABCD. EFGH. Besar sudut yang dibentuk oleh garis BG dengan BDHF adalah ... A.  90° B.  60° C.  45° D.  30° E.  15°

Pembahasan :

Misalkan sudut yang dibentuk oleh BG dengan BDHF adalah β. rusuk = a BG = EG = a√2 PG = \(\frac{1}{2}\) × EG = \(\mathrm{\frac{a}{2}}\)√2 Perhatikan Δ BPG siku-siku di P sin β = \(\mathrm{\frac{PG}{BG}}\) = \(\mathrm{\frac{\frac{a}{2}\sqrt{2}}{a\sqrt{2}}}\) = \(\frac{1}{2}\) Karena sin β = \(\frac{1}{2}\), maka β = 30°

Jawaban : D

11. UN 2008

Diketahui kubus dengan panjang rusuk 6 cm. Jika sudut antara diagonal AG dengan bidang alas ABCD adalah α, maka sin α adalah ... A. \(\frac{1}{2}\)√3 B. \(\frac{1}{2}\)√2 C. \(\frac{1}{3}\)√3 D. \(\frac{1}{2}\)E. \(\frac{1}{3}\)√2

Pembahasan :

Sudut antara AG dengan bidang alas ABCD adalah α. rusuk = a = 6 CG = a = 6 AG = a√3 = 6√3 Perhatikan Δ ACG siku-siku di C sin α = \(\mathrm{\frac{CG}{AG}}\) = \(\mathrm{\frac{6}{6\sqrt{3}}}\) = \(\frac{1}{3}\)√3

Jawaban : C

12. UN 2009

Balok ABCD. EFGH dengan panjang AB = BC = 3 cm dan AE = 5 cm. P terletak pada AD sehingga AP : PD = 1 : 2 dan Q terletak pada EG sehingga FQ : QG = 2 : 1. Jika α adalah sudut antara PQ dengan ABCD, maka tan α adalah ... A. \(\frac{1}{2}\)√5 B. \(\frac{1}{10}\)√10 C. \(\frac{1}{2}\)√10 D. \(\frac{1}{7}\)√14 E. \(\frac{1}{7}\)√35

Pembahasan :

Sudut antara PQ dengan ABCD adalah α. QR = 5 PS = 3 BS = SR = RC = 1 PR = \(\mathrm{\sqrt{PS^{2}+SR^{2}}=\sqrt{3^{2}+1^{2}}}\) PR = \(\mathrm{\sqrt{10}}\) Perhatikan Δ PQR siku-siku di R tan α = \(\mathrm{\frac{QR}{PR}}\) = \(\mathrm{\frac{5}{\sqrt{10}}}\) = \(\frac{1}{2}\sqrt{10}\)

Jawaban : C

13. UN 2012

Diketahui limas segi empat beraturan P.QRST, dengan rusuk alas 3 cm dan rusuk tegak 3√2 cm. Tangan sudut antara garis PT dan alas QRST adalah ... A. \(\frac{1}{3}\)√3 B. √2 C. √3 D. 2√2 E. 2√3
Pembahasan :

Misalkan sudut antara garis PT dan alas QRST adalah θ. QR = RS = ST = QT = 3 PQ = PR = PS = PT = 3√2 RT = a√2 = 3√2 Perhatikan bahwa PRT adalah segitiga sama sisi karena PR = RT = PT = 3√2 sehingga θ = 60° tan θ = tan 60° = √3

Jawaban : C

14. UN 2013

Pada kubus ABCD. EFGH sudut θ adalah sudut antara bidang BDE dengan bidang ABCD. Nilai dari sin θ adalah ... A. \(\frac{1}{4}\)√3 B. \(\frac{1}{2}\)√3 C. \(\frac{1}{3}\)√6 D. \(\frac{1}{2}\)√2 E. \(\frac{1}{3}\)√3

Pembahasan :

Sudut antara bidang BDE dengan bidang ABCD adalah θ. misalkan rusuk = a AE = a EO = \(\mathrm{\frac{a}{2}}\)√6 Perhatikan Δ AOE siku-siku di A sin θ = \(\mathrm{\frac{AE}{EO}}\) =\(\mathrm{\frac{a}{\frac{a}{2}\sqrt{6}}}\) = \(\frac{2}{\sqrt{6}}\) = \(\frac{1}{3}\)√6

Jawaban : C

15. UN 2014

Kubus ABCD.EFGH memiliki rusuk 4 cm. Sudut antara AE dan bidang AFH adalah α. Nilai sin α adalah ... A. \(\frac{1}{2}\)√2 B. \(\frac{1}{2}\)√3 C. \(\frac{1}{3}\)√3 D. \(\frac{2}{3}\)√2 E. \(\frac{3}{4}\)√3

Pembahasan :

Sudut antara AE dan bidang AFH adalah α rusuk = a = 4 EG = a√2 = 4√2 EO = \(\mathrm{\frac{1}{2}}\) × EG = 2√2 AO = \(\mathrm{\frac{a}{2}}\)√6 = 2√6 Perhatikan Δ AEO siku-siku di E sin α = \(\mathrm{\frac{EO}{AO}}\) = \(\mathrm{\frac{2\sqrt{2}}{2\sqrt{6}}=\frac{\sqrt{2}}{\sqrt{6}}}\) = \(\frac{1}{3}\)√3
Jawaban : C

16. UN 2007

Diketahui bidang 4 beraturan ABCD dengan panjang rusuk 8 cm. Kosinus sudut antara bidang ABC dan bidang ABD adalah ...

A. \(\frac{1}{3}\)

B. \(\frac{1}{2}\) C. \(\frac{1}{3}\)√3 D. \(\frac{2}{3}\) E. \(\frac{1}{2}\)√3

Pembahasan :

Misalkan sudut antara bidang ABC dan ABD adalah θ. Karena bangun diatas merupakan bidang empat beraturan, pastilah ke-4 bidangnya merupakan segitiga sama sisi. rusuk (a) = 8 DC = a = 8 PC = PD = \(\mathrm{\frac{a}{2}}\)√3 = 4√3 Perhatikan Δ PCD, dengan aturan cosinus diperoleh : cos θ = \(\mathrm{\frac{PC^{2}+PD^{2}-DC^{2}}{2\times PC\times PD}}\) cos θ = \(\mathrm{\frac{\left ( 4\sqrt{3} \right )^{2}+\left ( 4\sqrt{3} \right )^{2}-8^{2}}{2\times 4\sqrt{3}\times 4\sqrt{3}}}\) cos θ = \(\frac{1}{3}\)

Jawaban : A

17. UN 2015

Kubus ABCD. EFGH dengan rusuk 12 cm, tangen sudut antara bidang AFH dengan bidang CFH adalah... A. \(\frac{1}{3}\) B. \(\frac{1}{2}\)√2 C. \(\frac{2}{3}\)√2 D. √2 E. 2√2

Pembahasan :

Misalkan sudut antara bidang AFH dan CFH adalah θ. Perhatikan segitiga ACP AP = CP = \(\mathrm{\frac{a}{2}}\)√6 = \(\frac{12}{2}\)√6 = 6√6 AC = a√2 = 12√2 Dengan aturan cosinus Cos θ = \(\mathrm{\frac{AP^{2}+CP^{2}-AC^{2}}{2\,.\,AP\,.\,CP}}\) Cos θ = \(\mathrm{\frac{(6\sqrt{6})^{2}+(6\sqrt{6})^{2}-(12\sqrt{2})^{2}}{2\,.\,6\sqrt{6}\,.\,6\sqrt{6}}}\) Cos θ = \(\frac{216+216-288}{432}\) Cos θ = \(\frac{1}{3}\) Cos θ = \(\frac{1}{3}\) sisi samping = 1 sisi miring = 3 sisi depan = \(\sqrt{3^{2}-1^{2}}\) = √8 = 2√2 tan θ = \(\mathrm{\frac{depan}{samping}}\) = \(\frac{2\sqrt{2}}{1}\) = 2√2 Jadi, tangen sudut antara bidang AFH dan CFH adalah 2√2.

Jawaban : E

18. UN 2015 Diketahui kubus ABCD. EFGH dengan panjang rusuk 4 cm. Titik M adalah titik tengah AB. Jarak titik E ke CM sama dengan... A. \(\frac{4}{5}\)√30 cm B. \(\frac{2}{3}\)√30 cm C. 2√5 cm D. 2√3 cm E. 2√2 cm

Pembahasan :

CM = EM = \(\mathrm{\frac{a}{2}}\)√5 = \(\frac{4}{2}\)√5 = 2√5 CE = a√3 = 4√3 MN = a√2 = 4√2 Karena MN dan CE berpotongan tegak lurus dan sama besar di titik Q, maka MQ = \(\frac{1}{2}\)×MN = 2√2 Perhatikan segitiga CEM, ∠M adalah sudut tumpul karena CE2 > CM2 + EM2, sehingga jarak titik E ke CM adalah jarak dari titik E ke perpanjangan CM yaitu EP. Dengan menggunakan rumus luas segitiga pada segitiga CEM akan diperoleh persamaan sebagai berikut : \(\frac{1}{2}\)×CM×EP = \(\frac{1}{2}\)×CE×MQ CM × EP = CE × MQ 2√5 × EP = 4√3 × 2√2 (kali √5) 10 × EP = 8√30 EP = \(\frac{4}{5}\)√30

Jawaban : A

RALAT : 10/8/2017

Yang ditanyakan adalah jarak titik E ke CM, bukan jarak titik E ke perpanjangan CM. CM adalah ruas garis, dengan titik-titik ujungnya C dan M. Jadi, jarak titik E ke CM adalah jarak terdekat dari titik E ke ruas garis CM, yaitu EM = 2√5 (C)
19. UN 2016 Diketahui kubus ABCD EFGH dengan panjang rusuk 8 cm. Jarak titik E ke garis FD adalah... A. \(\frac{8}{3}\)√2 cm B. \(\frac{8}{3}\)√3 cm C. \(\frac{8}{3}\)√6 cm D. \(\frac{10}{3}\)√6 cm E. 4√6 cm

Pembahasan :

Jarak titik E ke garis FD adalah EP.

Perhatikan segitiga DEF siku-siku di E EF = 8 DE = 8√2 DF = 8√3

EP = \(\mathrm{\frac{DE \times EF}{DF}}\) EP = \(\mathrm{\frac{8\sqrt{2} \times 8}{8\sqrt{3}}}\) EP = \(\frac{8}{3}\)√6

Jawaban : C

20. UN 2016

Diketahui kubus ABCD EFGH dengan AB = 16 cm. Nilai sinus sudut antara garis AH dengan bidang BDHF adalah... A. \(\frac{1}{2}\) B. \(\frac{1}{3}\)√3 C. \(\frac{1}{2}\)√2 D. \(\frac{1}{2}\)√3 E. \(\frac{1}{3}\)√6

Pembahasan :

Misalkan sudut yang dibentuk oleh AH dengan BDHF adalah θ. rusuk = a = 16 cm AH = AC = a√2 = 16√2 AP = \(\frac{1}{2}\)×AC = 8√2 Perhatikan Δ AHP siku-siku di P

sin θ = \(\mathrm{\frac{AP}{AH}}\) = \(\mathrm{\frac{8\sqrt{2}}{16\sqrt{2}}}\) = \(\frac{1}{2}\)

Jawaban : A Untuk Ujian Nasional matematika IPA tahun 2017, materi dimensi tiga dikeluarkan sebanyak 4 soal dalam satu paket. 21. UN 2017 Diketahui kubus ABCD.EFGH dengan panjang rusuknya 6 cm. Jika α adalah sudut antara bidang AFH dan bidang BDHF, nilai sin α = ... A.  1/2 B.  1/3 √3 C.  1/2 √2 D.  1/2 √3 E.  2/3 √2

Pembahasan :

AC = a√2 = 6√2 AP =  \(\frac{1}{2}\). AC = 3√2 AO = \(\mathrm{\frac{a}{2}}\)√6 = 3√6 Perhatikan segitiga AOP siku-siku di P. sin α = \(\mathrm{\frac{AP}{AO}}\) = \(\frac{3\sqrt{2}}{3\sqrt{6}}\) = \(\frac{1}{3}\)√3

Jawaban : B

22. UN 2017

Diketahui kubus KLMN.OPQR dengan panjang rusuknya 6 cm. Jarak titik M ke bidang LNQ adalah ... A.  2√2  cm B.  2√3  cm C.  3√2  cm D.  3√3  cm E.  4√3  cm

Pembahasan :

Jarak M ke LNQ = jarak M ke QS, yaitu MT.
SM = \(\frac{1}{2}\). KM = 3√2 MQ = 6 SQ = \(\mathrm{\frac{a}{2}}\)√6 = 3√6

Perhatikan segitiga SMQ siku-siku di M. Pada segitiga siku-siku, jarak dari titik sudut siku-siku ke sisi miringnya adalah hasil kali dari kedua sisi siku-siku dibagi sisi miring.

Jadi, MT = \(\mathrm{\frac{SM \,\cdot \,MQ}{SQ}}\) = \(\mathrm{\frac{6\, \cdot \,3\sqrt{2}}{3\sqrt{6}}}\) = 2√3 atau MT = \(\frac{1}{3}\). MO = \(\frac{1}{3}\). 6√3 = 2√3

Jawaban : B

23. UN 2017

Diketahui limas beraturan T.ABCD. Panjang rusuk tegak dan panjang rusuk alas 4 cm. Jarak titik A ke TB adalah ... A.  2√2  cm B.  2√3  cm C.  4  cm D.  4√2  cm E.  4√3  cm

Pembahasan :

Jadi, jarak titik A ke TB adalah AP.
Perhatikan segitiga sama sisi ABT dengan panjang sisinya 4 cm. Pada segitiga sama sisi yang panjang sisinya a, jarak dari titik sudut ke sisi di depannya adalah \(\mathrm{\frac{a}{2}}\)√3. Jadi, jarak titik A ke TB adalah AP = \(\mathrm{\frac{4}{2}}\)√3 = 2√3

Jawaban : B

24. UN 2017

Diketahui limas beraturan T.ABCD dengan panjang rusuk tegak 6√2 cm dan panjang rusuk alas 6 cm. Jarak titik A ke TC adalah ... A.  2√2  cm B.  2√3  cm C.  3√2  cm D.  3√3  cm E.  3√6  cm

Pembahasan :

Jarak titik A ke TC adalah AP.
AC = a√2 = 6√2 Karena AC = TC = AT, maka ACT adalah segitiga sama sisi dengan panjang sisi 6√2. Jadi, AP = \(\mathrm{\frac{6\sqrt{2}}{2}}\)√3 = 3√6

Jawaban : E

25. UN 2017

Diketahui limas alas segiempat beraturan T.ABCD. Panjang rusuk tegak = rusuk alas = 4 cm. Sudut antara garis TA dan bidang alas ABCD adalah ... A.  15° B.  30° C.  45° D.  60° E.  90°

Pembahasan :

Misalkan sudut antara garis TA dan bidang alas ABCD adalah α.
AC = 4√2 AO = \(\frac{1}{2}\). AC = 2√2 AT = 4 Perhatikan segitiga AOT siku-siku di O. cos α = \(\mathrm{\frac{AO}{AT}}\) = \(\frac{2\sqrt{2}}{4}\) = \(\frac{1}{2}\)√2 Karena cos α = \(\frac{1}{2}\)√2 maka α = 45°

Jawaban : C

26. UN 2017

Diketahui limas segienam beraturan T.ABCDEF rusuk alasnya 6 cm dan tinggi limas 6√3 cm. Nilai sinus sudut antara rusuk tegak dan bidang alas limas adalah ... A.  1/3 √2 B.  1/2 C.  1/3 √3 D.  1/2 √2 E.  1/2 √3

Pembahasan :

Misalkan sudut antara rusuk tegak dengan bidang alas adalah α.
Perhatikan segitiga COT siku-siku di O. CT = \(\mathrm{\sqrt{\left (CO  \right )^{2}+\left (OT  \right )^{2}}}\)

CT = \(\mathrm{\sqrt{\left (6  \right )^{2}+\left (6\sqrt{3}  \right )^{2}}}\)

CT = 12 sin α = \(\mathrm{\frac{OT}{CT}}\) = \(\frac{6\sqrt{3}}{12}\) = \(\frac{1}{2}\)√3 atau tan α = \(\mathrm{\frac{OT}{CO}}\) = \(\frac{6\sqrt{3}}{6}\) = √3 Karena tan α = √3, maka α = 60° Jadi, sin α = sin 60° = \(\frac{1}{2}\)√3

Jawaban : E

27. UN 2017

Diketahui kubus ABCD.EFGH, panjang rusuknya 12 cm dan α adalah sudut antara bidang BDG dan ABCD. Nila sin α adalah ... A.  1/6 √6 B.  1/3 √3 C.  1/2 √2 D.  1/3 √6 E.  1/2 √3

Pembahasan :

CG = a = 12 OG = \(\mathrm{\frac{a}{2}}\)√6 = 6√6 Perhatikan segitiga OCG siku-siku di C. sin α = \(\mathrm{\frac{CG}{OG}}\) = \(\frac{12}{6\sqrt{6}}\) = \(\frac{1}{3}\)√6

Jawaban : D

Gallery Soal Dan Pembahasan Dimensi Tiga

Soal Dan Pembahasan Dimensi Tiga E8lym3wpv2ld

Dimensi

Pembahasan Dimensi Tiga Sbmptn 2017 Matematika Dasar Kode

Dimensi Tiga Jarak Titik Ke Garis Garis Ke Bidang Rumus

Soal Soal Dimensi Tiga

40 Soal Dan Pembahasan Dimensi 3

Contoh Soal Dan Pembahasan Matematika Peminatan Kelas 10

Contoh Soal Dimensi Tiga Dan Pembahasannya Anto Tunggal

Dimensi Tiga

5 Contoh Soal Dan Pembahasan Perkalian Titik Dot Product

Soal Dimensi Tiga Mohon Dibantu No 2 3 4 Dan 5 Dengan Cara

Soal Dan Pembahasan Super Lengkap Dimensi Tiga Konsep

Pembahasan Soal Dimensi Tiga

Contoh Soal Jarak Titik Ke Bidang Pada Limas Contoh Soal

Pembahasan Soal Dimensi Tiga Pra Un Sma 2016 Man 1 Kota Padang

Contoh Soal Dimensi Tiga Terupdate

Ppt Kumpulan Soal Ujian Nasional Ruang Dimensi Tiga

Soal Dan Pembahasan Materi Dimensi Tiga Jago Matematika

Pembahasan Soal Ujian Nasional Dimensi Tiga Pondok Soal

Soal Dan Pembahasan Dimensi Tiga Docx


0 Response to "Soal Dan Pembahasan Dimensi Tiga"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel