Buku Fisika Kelas 10
Buku Cetak Modul Buku Siswa Fisika Sma Kelas 10 Books
Buku Fisika (Kurikulum 2013) Kelas 10 SMA
- 1. i i SETYA NURACHMANDANI FISIKA 1 UNTUK SMA/MA KELAS X
- 2. ii ii Fisika 1 Untuk SMA/MA Kelas X Setya Nurachmandani Editor : Budi Wahyono Tata letak : Desey, Rina, Taufiq, Topo Tata grafis : Cahyo Muryono Ilustrator : Haryana Humardani Sampul : Tim Desain Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-Undang Diterbitkan oleh Pusat Perbukuan Departemen Pendidkan Nasional Tahun 2009 Diperbanyak oleh .... Hak Cipta Buku ini dibeli oleh Departemen Pendidikan Nasional dari Penerbit Grahadi 530.07 Set Setya Nurachmandani f Fisika 1 : Untuk SMA/MA Kelas X / Setya Nurachmandani ; Editor Budi Wahyono ; Ilustrator Haryana Humardani. — Jakarta : Pusat Perbukuan, Departemen Pendidikan Nasional, 2009. vii, 258 hlm. : ilus. : 25 cm. Bibliografi : hlm. 245-246 Indeks ISBN 978-979-068-166-8 (no jld lengkap) ISBN 978-979-068-168-2 1.Fisika-Studi dan Pengajaran 2. Wahyono, Budi 3. Humardani, Haryana 4. Judul
- 3. iii iii Puji syukur kami panjatkan ke hadirat Allah SWT, berkat rahmat dan karunia-Nya, Pemerintah, dalam hal ini, Departemen Pendidikan Nasional, pada tahun 2008, telah membeli hak cipta buku teks pelajaran ini dari penulis/ penerbit untuk disebarluaskan kepada masyarakat melalui situs internet (website) Jaringan Pendidikan Nasional. Buku teks pelajaran ini telah dinilai oleh Badan Standar Nasional Pendidikan dan telah ditetapkan sebagai buku teks pelajaran yang memenuhi syarat kelayakan untuk digunakan dalam proses pembelajaran melalui Peraturan Menteri Pendidikan Nasional Nomor 22 Tahun 2007 tanggal 25 Juni 2007. Kami menyampaikan penghargaan yang setinggi-tingginya kepada para penulis/penerbit yang telah berkenan mengalihkan hak cipta karyanya kepada Departemen Pendidikan Nasional untuk digunakan secara luas oleh para siswa dan guru di seluruh Indonesia. Buku-buku teks pelajaran yang telah dialihkan hak ciptanya kepada Departemen Pendidikan Nasional ini, dapat diunduh (down load), digandakan, dicetak, dialihmediakan, atau difotokopi oleh masyarakat. Namun, untuk penggandaan yang bersifat komersial harga penjualannya harus memenuhi ketentuan yang ditetapkan oleh Pemerintah. Diharapkan bahwa buku teks pelajaran ini akan lebih mudah diakses sehingga siswa dan guru di seluruh Indonesia maupun sekolah Indonesia yang berada di luar negeri dapat memanfaatkan sumber belajar ini. Kami berharap, semua pihak dapat mendukung kebijakan ini. Kepada para siswa kami ucapkan selamat belajar dan manfaatkanlah buku ini sebaik- baiknya. Kami menyadari bahwa buku ini masih perlu ditingkatkan mutunya. Oleh karena itu, saran dan kritik sangat kami harapkan. Jakarta, Februari 2009 Kepala Pusat Perbukuan Kata Sambutan
- 4. iv iv Segala puji penulis panjatkan kehadirat Tuhan Yang Maha Esa atas semua karunia yang telah diberikan, sehingga penulis dapat menyelesaikan buku pelajaran Fisika untuk SMA/MA ini sesuai rencana. Buku ini merupakan wujud partisipasi penulis dalam rangka mencerdaskan kehidupan bangsa. Mengapa Anda harus belajar fisika? Belajar fisika bukan berarti harus menjadi seorang fisikawan atau peneliti. Apapun profesi yang Anda impikan, fisika merupakan ilmu dasar yang wajib Anda kuasai. Misalnya, Anda ingin menjadi dokter, psikolog, atau politikus. Seorang dokter harus mengetahui dasar-dasar fisika, sebab banyak peralatan medis terkini yang prinsip kerjanya berdasarkan ilmu fisika. Untuk psikolog atau politikus, ilmu fisika akan memberikan nilai le-bih karena ilmu fisika bisa menyelesaikan pertanyaan- pertanyaan yang kelihatan sederhana tapi sulit. Seperti mengapa langit berwarna biru, mengapa setelah hujan kadang ada pelangi, dan mengapa terjadi gerhana bulan. “Sesuatu yang sulit menjadi mudah”, merupakan moto penulisan buku ini. Masih banyak diantara Anda yang menganggap fisika sebagai momok. Fisika dimitoskan sebagai pelajaran penuh hantu, sulit, dan susah dipahami. Oleh kare-na itu, penulis bertekad untuk mengemas buku ini agar mudah untuk dipelajari dan mengasyikkan. Penulis menyajikan buku dengan menggunakan bahasa yang sederhana dan komunikatif. Ini penting, agar Anda mudah mengikuti alur konsep yang harus dikuasai, tidak merasa digurui, dan tidak menjenuhkan. “Berkembang sesuai kecerdasan masing-masing siswa”. Ini adalah moto kedua dari penulisan buku ini. Penulis berharap dengan menggunakan buku ini Anda dapat berkembang sesuai tingkat kecerdasan Anda. Karena pada kenyataannya tiap orang memiliki minat, bakat, dan kecerdasan yang berbeda. Buku ini menekankan pada proses belajar yang bermakna dan ketercapaian hasil belajar yang berupa kompetensi dasar yang harus Anda kuasai. Selain berisi informasi, buku ini juga diarahkan agar Anda mampu berpikir sistematis, metodis, kritis, dan aplikatif. Kata Pengantar
- 5. v v Penulis berharap buku ini dapat bermanfaat dalam pembelajaran fisika. Kritik dan saran dari guru dan siswa pemakai sangat penulis harapkan guna perbaikan buku ini pada edisi mendatang. Selamat belajar, semoga sukses. Surakarta, Juli 2007 Penulis
- 6. vi vi Kata Sambutan .................................................................................................... iii Kata Pengantar .................................................................................................... iv Daftar Isi ............................................................................................................... vi Bab I Pengukuran ............................................................................................ 1 A. Besaran dan Satuan ....................................................................... 3 B. Dimensi ............................................................................................ 5 C. Instrumen Pengukuran ................................................................. 8 D. Ketidakpastian Pengukuran ........................................................ 11 E. Vektor ............................................................................................... 18 Pelatihan.................................................................................................. 31 Bab II Gerak Lurus ........................................................................................... 35 A. Jarak dan Perpindahan ................................................................. 37 B. Kecepatan dan Kelajuan .............................................................. 40 C. Percepatan ....................................................................................... 44 D. Gerak Lurus Beraturan (GLB) ...................................................... 48 E. Gerak Lurus Berubah Beraturan ................................................. 51 Pelatihan.................................................................................................. 61 Bab III Gerak Melingkar .................................................................................. 65 A. Gerak Melingkar Beraturan.......................................................... 66 B. Gerak Melingkar Berubah Beraturan ......................................... 71 C. Hubungan Roda-Roda .................................................................. 73 Pelatihan.................................................................................................. 76 Bab IV Dinamika Partikel ................................................................................ 79 A. Hukum-Hukum Newton .............................................................. 81 B. Jenis-Jenis Gaya............................................................................... 87 C. Penerapan Hukum Newton ......................................................... 93 Pelatihan.................................................................................................. 110 Pelatihan Ulangan Semester Gasal ............................................................... 113 Bab V Alat-Alat Optik ..................................................................................... 119 A. Mata .................................................................................................. 121 B. Lup (Kaca Pembesar) .................................................................... 128 C. Kamera ............................................................................................. 131 D. Mikroskop ........................................................................................ 132 E. Teropong .......................................................................................... 138 Daftar Isi
- 7. vii vii F. Periskop ............................................................................................ 143 G. Proyektor Slide ................................................................................ 144 Pelatihan.................................................................................................. 147 Bab VI Kalor dan Suhu ..................................................................................... 149 A. Suhu dan Termometer................................................................... 151 B. Pemuaian ......................................................................................... 152 C. Kalor ................................................................................................. 157 D. Perubahan Wujud .......................................................................... 160 E. Perpindahan Kalor......................................................................... 165 Pelatihan.................................................................................................. 174 Bab VII Listrik Dinamis ................................................................................... 177 A. Arus Listrik ...................................................................................... 179 B. Beda Potensial ................................................................................. 185 C. Hukum Ohm ................................................................................... 187 D. Hambatan Listrik............................................................................ 191 E. Hukum Kirchoff ............................................................................. 198 F. Rangkaian Hambatan Listrik ....................................................... 207 G. Daya Listrik dalam Kehidupan Sehari-Hari ............................. 211 H. Penghematan Energi Listrik ......................................................... 214 Pelatihan.................................................................................................. 219 Bab VIII Gelombang Elektromagnetik ......................................................... 221 A. Hipotesis Maxwell .......................................................................... 222 B. Sifat dan Spektrum Gelombang Elektromagnetik.................... 224 C. Karakteristik dan Aplikasi Gelombang Elektromagnetik ....... 228 Pelatihan.................................................................................................. 234 Pelatihan Ulangan Semester Genap .............................................................. 237 Kunci Jawaban .................................................................................................... 243 Daftar Pustaka ..................................................................................................... 245 Daftar Gambar .................................................................................................... 247 Daftar Tabel ......................................................................................................... 250 Glosarium ............................................................................................................. 251 Indeks Subjek dan Pengarang ........................................................................ 255 Lampiran ............................................................................................................... 257
- 8. viii viii
- 9. 1Pengukuran Untuk dapat membuat pesawat tempur canggih, dibutuhkan pengukuran dengan akurasi dan tingkat presisi yang tinggi. Kesalahan pengukuran sedikit saja dalam pembuatannya, dapat berakibat fatal pada fungsinya dan bisa mengakibatkan bencana. Pernahkah Anda mendengar berita tentang kecelakaan pesawat karena kesalahan pengukuran? K ata Kunci •Angka Penting •Besaran Pokok •Besaran Skalar •Besaran Turunan •Besaran Vektor •Fisika •Kesalahan Acak •KesalahanSistematis •Ketelitian •Ketepatan •Metode Analitis •Metode Grafis •Metode Poligon •Pengukuran •Satuan Dimensi •Vektor Resultan •Metode Jajargenjang •Pengukuran Berulang Sumber: AO Calender Tujuan Pembelajaran Pengukuran Bab I • Anda dapat mengukur besaran panjang, massa, dan waktu, serta dapat melakukan penjumlahan vektor.
- 10. 2 Fisika SMA/MA Kelas X P eta Konsep Pengukuran Alat-Alat Ukur – Neraca 3 Lengan – Neraca 4 Lengan – Neraca Elektronik – Jam Atom – Arloji – Stopwatch – Mistar – Jangka Sorong – Mikrometer Sekrup Panjang Massa Waktu Besaran dan Satuan Berdasarkan ada tidaknya arah Besaran Vektor Besaran Skalar – Jarak – Waktu – Massa – Kelajuan – Perpindahan – Kecepatan – Percepatan – Gaya Berdasarkan Satuan Besaran Pokok Besaran Turunan – Luas satuan m2 – Volume satuan m3 – Kecepatan satuan m s-1 – Percepatan satuan m s-2 – Gaya satuan N – Panjang satuan meter – Massa satuan kilogram – Waktu satuan sekon – Suhu satuan kelvin – Kuat arus listrik satuan ampere – Jumlah zat satuan candela – Intensitas cahaya satuan mol contoh contoh contoh terdiri atas memerlukanmemiliki dibedakan terdiri atas terdiri atas contoh contoh contohcontoh
- 11. 3Pengukuran KolomDiskusi Dewasa ini, kemajuan teknologi berkembang dengan sangat cepat yang membuat hidup manusia makin mudah dan bermakna. Ilmu pengetahuan alam memiliki peran yang dominan dalam memengaruhi perkembangan teknologi. Fisika merupakan ilmu yang mempelajari fenomena atau gejala-gejala alam dan interaksi di dalamnya, adalah salah satu cabang ilmu pengetahuan alam. Di SMP kelas VII, Anda sudah mempelajari besaran beserta satuannya dan pengukuran. Pengukuran merupakan materi dasar yang harus dipahami oleh tiap orang yang akan belajar fisika, dengan menguasainya akan memudahkan dalam memahami konsep-konsep selanjutnya. Pada bab ini, Anda akan mem- perdalam pengetahuanmu mengenai pengukuran. Diskusikan bersama teman sebangku Anda mengenai besaran dan satuan. Bahas mengenai dasar penetapan, jenis, dan kegunaannya, dengan mengingat materi yang telah Anda dapatkan di SMP. Buatlah kesimpulan dan kumpulkan di meja guru Anda! A. Besaran dan Satuan Besaran dalam fisika diartikan sebagai sesuatu yang dapat diukur, serta memiliki nilai besaran (besar) dan satuan. Sedangkan satuan adalah sesuatu yang dapat digunakan sebagai pembanding dalam pengukuran. Satuan Internasional (SI) merupakan satuan hasil konferensi para ilmuwan di Paris, yang membahas tentang berat dan ukuran. Berdasarkan satuannya besaran dibedakan menjadi dua, yaitu besaran pokok dan besaran turunan. Selain itu, berdasarkan ada tidaknya arah, besaran juga dikelompokkan menjadi dua, yaitu besaran skalar dan besaran vektor (akan dibahas khusus pada subbab E). 1. Besaran Pokok Besaran pokok adalah besaran yang digunakan sebagai dasar untuk menetapkan besaran yang lain. Satuan besaran pokok disebut satuan pokok dan telah ditetapkan terlebih dahulu berdasarkan kesepakatan para ilmuwan. Besaran pokok bersifat bebas, artinya tidak bergantung pada besaran pokok yang lain. Pada Tabel 1.1 berikut, disajikan besaran pokok yang telah disepakati oleh para ilmuwan.
- 12. 4 Fisika SMA/MA Kelas X S oal Kompetensi 1.1 Tabel 1.1 Besaran-Besaran Pokok dan Satuan Internasionalnya (SI) 2. Besaran Turunan Besaran turunan adalah besaran yang dapat diturunkan dari besaran pokok. Satuan besaran turunan disebut satuan turunan dan diperoleh dengan mengabungkan beberapa satuan besaran pokok. Berikut merupakan beberapa contoh besaran turunan beserta satuannya. Tabel 1.2 Contoh Beberapa Besaran Turunan dan Satuannya 1. Apakah perbedaan besaran pokok dan besaran turunan? Jelaskan! 2. Sebutkan besaran pokok dan turunan yang sering Anda temui dalam kehidupan sehari-hari! 3. Sebutkan satuan tidak baku yang masih digunakan di sekitarmu dan jelaskan alasan satuan tersebut masih digunakan! 4. Sebutkan 3 sistem SI dari besaran pokok yang sering Anda jumpai! No Nama Besaran Pokok Lambang Besaran Pokok Satuan 1. 2. 3. 4. 5. 6. 7. 8. 9. Panjang Massa Waktu Kuat arus listrik Suhu Intensitas cahaya Jumlah zat Sudut bidang datar Sudut ruang l m t I t I n Meter Kilogram Sekon Ampere Kelvin Kandela Mole Radian Steradian m kg s A K cd Mol Rad *) Sr *) Lambang Satuan Catatan: *) besaran pokok tambahan 1. 2. 3. 4. 5. 6. Luas Kecepatan Percepatan Gaya Tekanan Usaha A v a F P W m2 ms-1 ms-2 kg ms-2 kg m-1 s-2 kg m2 s-2 Nama Besaran Turunan Lambang Besaran Turunan Satuan TurunanNo
- 13. 5Pengukuran B. Dimensi Dimensi suatu besaran adalah cara besaran tersebut tersusun atas be- saran-besaran pokoknya. Pada sistem Satuan Internasional (SI), ada tujuh besaran pokok yang berdimensi, sedangkan dua besaran pokok tambahan tidak berdimensi. Cara penulisan dimensi dari suatu besaran dinyatakan dengan lambang huruf tertentu dan diberi tanda kurung persegi. Untuk lebih jelasnya, perhatikan Tabel 1.3 berikut! Tabel 1.3 Besaran Pokok dan Dimensinya Berdasarkan Tabel 1.3, Anda dapat mencari dimensi suatu besaran yang lain dengan cara mengerjakan seperti pada perhitungan biasa. Untuk penulisan perkalian pada dimensi, biasa ditulis dengan tanda pangkat positif dan untuk pembagian biasa ditulis dengan tanda pangkat negatif. Tentukan dimensi besaran-besaran berikut! a. Luas d. Percepatan b. Volume e. Gaya c. Kecepatan f. Usaha Jawab: a. Luas (L) = panjang × lebar = [L] × [L] = [L]2 b. Volume (V) = panjang × lebar × tinggi = [L] × [L] × [L] = [L]3 c. Kecepatan (v) = perpindahan waktu = [L] [T] = [L][T]-1 d. Percepatan (a) = kecepatan waktu = -1 [L][T] [T] = [L][T]-2 [L] [M] [T] [I] [ ] [J] [N] - - 1. 2. 3. 4. 5. 6. 7. 8. 9. Panjang Massa Waktu Kuat arus listrik Suhu Intensitas cahaya Jumlah zat Sudut bidang datar Sudut ruang Meter Kilogram Sekon Ampere Kelvin Kandela Mole Radian Steradian m kg s A K cd Mol Rad *) Sr *) Nama Besaran Pokok Lambang Satuan DimensiNo Satuan Contoh 1.1
- 14. 6 Fisika SMA/MA Kelas X e. Gaya (F) = massa × percepatan = [M] × [L][T]-2 f. Usaha (W) = gaya × perpindahan = [M] × [L][T]-2 × [L] = [M] × [L]2 [T]-2 Dimensi mempunyai dua kegunaan, yaitu untuk menentukan satuan dari suatu besaran turunan dengan cara analisis dimensional dan menunjukkan kesetaraan beberapa besaran yang sepintas tampak berbeda. 1. Analisis Dimensional Analisis dimensional adalah suatu cara untuk menentukan satuan dari suatu besaran turunan, dengan cara memerhatikan dimensi besaran tersebut. Jika G merupakan suatu konstanta dari persamaan gaya tarik menarik antara dua benda yang bermassa m1 dan m2 , serta terpisah jarak sejauh r (F = G 1 2 2 m m r ), maka tentukan dimensi dan satuan G! Diketahui : Persamaannya adalah F = G 1 2 2 m m r Dimensi (gaya) F = [M] × [L][T]-2 (lihat Contoh 1.1) Dimensi (massa) m = [M] (lihat Tabel 1.3) Dimensi (jarak) r = [L] (lihat Tabel 1.3) Ditanyakan : a. Dimensi G = ...? b. Satuan G = ...? Jawab : a. F = G 1 2 2 m m r G = 2 1 2 Fr m m , maka dimensinya adalah G = 2 g m ay as a × sa × (jar m ak) assa = -2 2 [M] × [L][T] [ [M] × L] [M] = 3 -2 [L] [T] [M] = [M]-1 [L]3 [T]-2 Jadi, dimensi konstanta G adalah [M]-1 [L]3 [T]-2 . Contoh 1.2
- 15. 7Pengukuran S oal Kompetensi 1.2 b. Karena dimensi G = [M]-1 [L]3 [T]-2 , maka satuannya adalah G = [M]-1 [L]3 [T]-2 = kg-1 m3 s-2 Jadi, satuan konstanta G adalah kg-1 m3 s-2 . 2. Menunjukkan Kesetaraan Beberapa Besaran Selain digunakan untuk mencari satuan, dimensi juga dapat digunakan untuk menunjukkan kesetaraan beberapa besaran yang terlihat berbeda. Buktikan bahwa besaran usaha (W) memiliki kesetaraan dengan besaran energi kinetik (Ek)! Diketahui : Dimensi usaha (W)= [M] [L]2 [T]-2 (lihat Contoh 1.1) Persamaan energi kinetik Ek = 1 2 mv2 Ditanyakan : Bukti kesetaraannya? Jawab : Dimensi usaha (W) = [M] [L]2 [T]-2 Angka setengah pada persamaan energi kinetik merupakan bilangan tak berdimensi, sehingga dimensi energi kinetik menjadi sebagai berikut. Dimensi energi kinetik (Ek) = mv2 = massa × (kecepatan)2 = [M] × {[L] [T]-1 }2 = [M] [L]2 [T]-2 Jadi, karena nilai dimensi usaha (W) dan energi kinetik (Ek) sama, maka hal ini menunjukkan bahwa besaran usaha memiliki kesetaraan dengan besaran energi kinetik. 1. Tulislah kembali pengertian dimensi dan fungsinya dengan meng- gunakan bahasa Anda sendiri! 2. Besarnya massa jenis suatu benda yang memiliki massa m dan luas alasnya A, dinyatakan dengan persamaan m g A . Jika g suatu konstanta, maka tentukan dimensi dan satuannya! Contoh 1.3
- 16. 8 Fisika SMA/MA Kelas X C. Instrumen Pengukuran Sejak jaman dahulu orang telah melakukan pengukuran, seperti mengukur luas tanah, mengukur massa badannya, dan mengukur selang waktu antara matahari terbit sampai tenggelam. Di SMP Anda telah mengetahui definisi mengukur, yaitu proses membandingkan suatu besaran yang diukur dengan besaran tertentu yang telah diketahui atau ditetapkan sebagai acuan. Pada pengukuran yang berbeda Anda mungkin membutuhkan alat/ instrumen yang berbeda pula. Misalnya, saat mengukur panjang jalan Anda menggunakan meteran, tetapi saat menimbang berat badan Anda meng- gunakan neraca. Berikut akan Anda pelajari instrumen pengukur panjang, massa, dan waktu. 1. Alat Ukur Panjang Penggaris/mistar, jangka sorong, dan mikrometer sekrup merupakan contoh alat ukur panjang. Setiap alat ukur memiliki ketelitian yang berbeda, sehingga Anda harus bisa memilih alat ukur yang tepat untuk sebuah pengu- kuran. Pemilihan alat ukur yang kurang tepat akan menyebabkan kesalahan pada hasil pengukuran. a. Mistar Alat ukur panjang yang sering Anda gunakan adalah mistar atau penggaris. Pada umumnya, mistar memiliki skala terkecil 1 mm atau 0,1 cm. Mistar mempunyai keteliti- an pengukuran 0,5 mm, yaitu sebesar setengah dari skala terkecil yang dimiliki oleh mistar. Pada sa- at melakukan pengukuran dengan menggunakan mistar, arah pan- dangan hendaknya tepat pada tempat yang diukur. Artinya, arah pandangan harus tegak lurus dengan skala pada mistar dan benda yang di ukur. Jika pandangan mata tertuju pada arah yang kurang tepat, maka akan menyebabkan nilai hasil pengukuran menjadi lebih besar atau lebih kecil. Kesalahan pengukuran semacam ini di sebut kesalahan paralaks. b. Jangka Sorong Jangka sorong terdiri atas dua bagian, yaitu rahang tetap dan rahang geser. Skala panjang yang terdapat pada rahang tetap merupakan skala utama, sedangkan skala pendek yang terdapat pada rahang geser merupakan skala nonius atau vernier. Nama vernier diambilkan dari nama penemu jangka sorong, yaitu Pierre Vernier, seorang ahli teknik berkebangsaan Prancis. posisi salah posisi benar posisi salah benda Gambar 1.1 Cara membaca yang tepat akan men- dapatkan hasil pengukuran yang akurat.
- 17. 9Pengukuran K olom Ilmuwan 1.1 Skala utama pada jangka so- rong memiliki skala dalam cm dan mm. Sedangkan skala nonius pada jangka sorong memiliki panjang 9 mm dan di bagi dalam 10 skala, sehingga beda satu skala nonius dengan satu skala pada skala uta- ma adalah 0,1 mm atau 0,01 cm. Jadi, skala terkecil pada jangka sorong adalah 0,1 mm atau 0,01 cm. Jangka sorong tepat digunakan untuk mengukur diameter luar, diameter dalam, kedalaman tabung, dan panjang benda sampai nilai 10 cm. Untuk lebih memahami tentang tentang jangka sorong, perhatikan Gambar 1.2. c. Mikrometer Sekrup Mikrometer sekrup sering digunakan untuk mengukur tebal benda- benda tipis dan mengukur diameter benda-benda bulat yang kecil seperti tebal kertas dan diameter kawat. Mikrometer sekrup terdiri atas dua bagian, yaitu poros tetap dan poros ulir. Skala panjang yang terdapat pada poros tetap merupakan skala utama, sedangkan skala panjang yang terdapat pada poros ulir merupakan skala nonius. Skala utama mikrometer sekrup mempunyai skala dalam mm, sedangkan skala noniusnya terbagi dalam 50 bagian. Satu bagian pada skala nonius mempunyai nilai 1/50 × 0,5 mm atau 0,01 mm. Jadi, mikrometer se- krup mempunyai tingkat ketelitian paling tinggi dari kedua alat yang te- lah disebutkan sebelumnya, yaitu 0,01 mm. Perhatikan gambar berikut! Di SMP Anda telah mempelajari tentang jangka sorong dan mikro- meter sekrup. Sekarang buatlah tulisan mengenai cara-cara meng- gunakan jangka sorong dan mikrometer sekrup di buku tugas Rahang tetap atas Rahang sorong atas Tombol kunci Skala utama Tangkai ukur kedalaman Skala nonius Rahang sorong bawah Benda yang diukur Rahang tetap bawah Gambar 1.2 Jangka sorong dan bagian-bagiannya. Ruang ukur tetap Ruang ukur gerak Skala putar dengan silinder putar Gigi putar Skala tetap dengan silinder tetap Kunci penyetel Rangka Gambar 1.3 Mikrometer sekrup dan bagian-bagiannya.
- 18. 10 Fisika SMA/MA Kelas X beserta contoh-contohnya. Demonstrasikan cara penggunaan jangka sorong dan mikrometer sekrup yang telah Anda tulis di depan teman-teman Anda. Apakah teman-teman Anda setuju dengan cara Anda menggunakan jangka sorong dan mikrometer sekrup? Jika ada diantara teman Anda yang tidak setuju, maka mintalah dia untuk mendemonstrasikan cara-cara penggunaan jangka sorong dan mikrometer sekrup versi dia! 2. Alat Ukur Massa Massa benda menyatakan banyaknya zat yang terdapat dalam suatu benda. Massa tiap benda selalu sama dimana pun benda tersebut berada. Satuan SI untuk massa adalah kilogram (kg). Alat untuk mengukur massa disebut neraca. Ada beberapa jenis neraca, antara lain, neraca ohauss, neraca lengan, neraca langkan, neraca pasar, neraca tekan, neraca badan, dan neraca elektronik. Se- tiap neraca memiliki spesifikasi penggunaan yang berbeda-beda. Jenis neraca yang umum ada di sekolah Anda adalah neraca tiga lengan dan empat lengan. Pada neraca tiga lengan, lengan paling depan memuat angka satuan dan sepersepuluhan, lengan tengah memuat angka puluhan, dan lengan paling belakang memuat angka ratusan. Cara menimbang dengan meng- gunakan neraca tiga lengan adalah sebagai berikut. a. Posisikan skala neraca pada posisi nol dengan menggeser penunjuk pada lengan depan dan belakang ke sisi kiri dan lingkaran skala diarahkan pada angka nol! b. Periksa bahwa neraca pada posisi setimbang! c. Letakkan benda yang akan diukur di tempat yang tersedia pada neraca! d. Geser ketiga penunjuk diurutkan dari penunjuk yang terdapat pada ra- tusan, puluhan, dan satuan sehingga tercapai keadaan setimbang! e. Bacalah massa benda dengan menjumlah nilai yang ditunjukkan oleh penunjuk ratusan, puluhan, satuan, dan sepersepuluhan! 3. Alat Ukur Waktu Standar satuan waktu adalah sekon atau detik (dalam buku ini akan digunakan sekon). Alat yang digunakan untuk mengukur waktu biasanya adalah jam atau arloji. Untuk megukur selang waktu yang pendek di Gambar 1.4 Neraca tiga lengan. Sumber: Kamus Visual
- 19. 11Pengukuran K olom Ilmuwan 1.2 gunakan stopwatch. Stopwatch memiliki tingkat ketelitian sampai 0,01 detik. Alat ukur yang paling tepat adalah jam atom. Jam ini hanya digunakan oleh para ilmuwan di laboratorium. Arloji ada dua jenis, yaitu arloji mekanis dan arloji digital. Jarum arloji mekanis digerakkan oleh gerigi mekanis yang selalu berputar, sedangkan arloji digital berdasarkan banyaknya getaran yang dilakukan oleh sebuah kristal kuarsa yang sangat kecil. Arloji akan bekerja sepanjang sumber energinya masih ada. Ketelitian arloji adalah 1 sekon. Kelemahan arloji mekanis maupun digital adalah selalu bergerak sehingga sulit dibaca secara teliti. Waktu yang terbaca pada arloji mekanis ditunjukkan oleh kerja ketiga jarum, yaitu jarum jam, jarum menit, dan jarum detik. Jarum jam bergerak satu skala tiap satu jam, jarum menit bergerak satu skala tiap satu menit, jarum detik bergerak satu skala tiap satu detik. Cara membaca untuk arloji digital sangat mudah sebab angka yang ditampilkan pada arloji sudah menunjukkan waktunya. Salah satu alat ukur waktu kuno adalah jam matahari. Jam matahari yang berukuran besar dan dapat berfungsi dengan baik sampai se- karang terdapat di museum IPTEK Bandung. Bentuklah kelompok yang terdiri atas 5 sampai 8 orang. Buatlah bersama anggota kelompok Anda sebuah jam matahari sederhana yang dapat berfungsi! Jelaskan kelebihan-kelebihan jam matahari buatan kelompok Anda di depan kelas, jika perlu tunjukkan cara kerjanya! D. Ketidakpastian Pengukuran Saat melakukan pengukuran mengunakan alat, tidaklah mungkin Anda mendapatkan nilai yang pasti benar (xo ), melainkan selalu terdapat ketidakpastian. Apakah penyebab ketidakpastian pada hasil pengukuran? Roda gigi keempat Batu Roda gigi ketiga Alat pemutar Kunci Tong Roda tengah Pegas rambut Roda pelepas gerak Peraga kristal cair Gambar 1.5 Arloji dan bagian-bagiannya. Sumber: Kamus Visual
- 20. 12 Fisika SMA/MA Kelas X Secara umum penyebab ketidakpastian hasil pengukuran ada tiga, yaitu kesalahan umum, kesalahan sistematik, dan kesalahan acak. 1. Kesalahan Umum Kesalahan umum adalah kesalahan yang disebabkan keterbatasan pada pengamat saat melakukan pengukuran. Kesalahan ini dapat disebabkan karena kesalahan membaca skala kecil, dan kekurangterampilan dalam menyusun dan memakai alat, terutama untuk alat yang melibatkan banyak komponen. 2. Kesalahan Sistematik Kesalahan sistematik merupakan kesalahan yang disebabkan oleh alat yang digunakan dan atau lingkungan di sekitar alat yang memengaruhi kinerja alat. Misalnya, kesalahan kalibrasi, kesalahan titik nol, kesalahan komponen alat atau kerusakan alat, kesalahan paralaks, perubahan suhu, dan kelembaban. a. Kesalahan Kalibrasi Kesalahan kalibrasi terjadi karena pemberian nilai skala pada saat pembuatan atau kalibrasi (standarisasi) tidak tepat. Hal ini mengakibatkan pembacaan hasil pengukuran menjadi lebih besar atau lebih kecil dari nilai sebenarnya. Kesalahan ini dapat diatasi dengan mengkalibrasi ulang alat menggunakan alat yang telah terstandarisasi. b. Kesalahan Titik Nol Kesalahan titik nol terjadi karena titik nol skala pada alat yang digunakan tidak tepat berhimpit dengan jarum penunjuk atau jarum penunjuk yang ti- dak bisa kembali tepat pada skala nol. Akibatnya, hasil pengukuran dapat mengalami penambahan atau pengurangan sesuai dengan selisih dari skala nol semestinya. Kesalahan titik nol dapat diatasi dengan melakukan koreksi pada penulisan hasil pengukuran c. Kesalahan Komponen Alat Kerusakan pada alat jelas sangat berpengaruh pada pembacaan alat ukur. Misalnya, pada neraca pegas. Jika pegas yang digunakan sudah lama dan aus, maka akan berpengaruh pada pengurangan konstanta pegas. Hal ini menjadikan jarum atau skala penunjuk tidak tepat pada angka nol yang membuat skala berikutnya bergeser. d. Kesalahan Paralaks Kesalahan paralaks terjadi bila ada jarak antara jarum penunjuk dengan garis-garis skala dan posisi mata pengamat tidak tegak lurus dengan jarum.
- 21. 13Pengukuran K olom Ilmuwan 1.3 Carilah informasi di perpustakaan, majalah ilmiah, atau di internet tentang kondisi lingkungan sekitar yang dapat memengaruhi kinerja alat percobaan! Sebutkan kondisi-kondisi tersebut, jelaskan pengaruh- nya, dan cara mengatasinya! Tulislah informasi yang Anda dapat dalam bentuk laporan dan kumpulkan di meja guru! 3. Kesalahan Acak Kesalahan acak adalah kesalahaan yang terjadi karena adanya fluktuasi- fluktuasi halus pada saat melakukan pengukuran. Kesalahan ini dapat di- sebabkan karena adanya gerak brown molekul udara, fluktuasi tegangan listrik, landasan bergetar, bising, dan radiasi. a. Gerak Brown Molekul Udara Molekul udara seperti Anda ketahui keadaannya selalu bergerak secara tidak teratur atau rambang. Gerak ini dapat mengalami fluktuasi yang sangat cepat dan menyebabkan jarum penunjuk yang sangat halus seperti pada mikrogalvanometer terganggu karena tumbukan dengan molekul udara. b. Fluktuasi Tegangan Listrik Tegangan listrik PLN atau sumber tegangan lain seperti aki dan baterai selalu mengalami perubahan kecil yang tidak teratur dan cepat sehingga menghasilkan data pengukuran besaran listrik yang tidak konsisten. c. Landasan yang Bergetar Getaran pada landasan tempat alat berada dapat berakibat pembacaan skala yang berbeda, terutama alat yang sensitif terhadap gerak. Alat seperti seismograf butuh tempat yang stabil dan tidak bergetar. Jika landasannya bergetar, maka akan berpengaruh pada penunjukkan skala pada saat terjadi gempa bumi. d. Bising Bising merupakan gangguan yang selalu Anda jumpai pada alat elektronik. Gangguan ini dapat berupa fluktuasi yang cepat pada tegangan akibat dari komponen alat bersuhu. e. Radiasi Latar Belakang Radiasi gelombang elektromagnetik dari kosmos (luar angkasa) dapat mengganggu pembacaan dan menganggu operasional alat. Misalnya, ponsel tidak boleh digunakan di SPBU dan pesawat karena bisa mengganggu alat ukur dalam SPBU atau pesawat. Gangguan ini dikarenakan gelombang elektromagnetik pada telepon seluler dapat mengasilkan gelombang radiasi yang mengacaukan alat ukur pada SPBU atau pesawat.
- 22. 14 Fisika SMA/MA Kelas X Kegiatan 1.1 Adanya banyak faktor yang menyebabkan kemungkinan terjadinya kesalahan dalam suatu pengukuran, menjadikan Anda tidak mungkin mendapatkan hasil pengukuran yang tepat benar. Oleh karena itu, Anda harus menuliskan ketidakpastiannya setiap kali melaporkan hasil dari suatu pengukuran. Untuk menyatakan hasil ketidakpastian suatu pengukuran dapat menggunakan cara penulisan x = (xo ± x), dengan x merupakan nilai pendekatan hasil pengukuran terhadap nilai benar, xo merupakan nilai hasil pengukuran, dan x merupakan ketidakpastiannya (angka taksiran ketidakpastian). Untuk melaporkan suatu hasil pengukuran Anda terkadang mem- butuhkan juga pemahaman mengenai konversi satuan, angka penting, notasi ilmiah, dan aturan pembulatan. Buatlah sebuah tulisan yang membahas hal-hal tersebut. Anda dapat mencari informasi di perpustakaan, majalah, atau internet. Kumpulkan hasil tulisan Anda di meja guru! Ketidakpastian pada Pengukuran Tunggal Pengukuran tunggal merupakan pengukuran yang hanya dilakukan sekali saja. Pada pengukuran tunggal, nilai yang dijadikan pengganti nilai benar adalah hasil pengukuran itu sendiri. Sedangkan ketidakpastiannya diperoleh dari setengah nilai skala terkecil instrumen yang digunakan. Misalnya, Anda mengukur panjang sebuah benda menggunakan mistar. Perhatikan Gambar 1.6! Gambar 1.6 Panjang suatu benda yang diukur dengan menggunakan mistar. Pada Gambar 1.6 ujung benda terlihat pada tanda 15,6 cm lebih sedikit. Berapa nilai lebihnya? Ingat, skala terkecil mistar adalah 1 mm. Telah Anda sepakati bahwa ketidakpastian pada pengukuran tunggal merupakan setengah skala terkecil alat. Jadi, ketidakpastian pada pengukuran tersebut adalah sebagai berikut. x = 1 2 × 1 mm = 0,5 mm = 0,05 cm benda mistar
- 23. 15Pengukuran Karena nilai ketidakpastiannya memiliki dua desimal (0,05 mm), maka hasil pengukurannya pun harus Anda laporkan dalam dua desimal. Artinya, nilai x harus Anda laporkan dalam tiga angka. Angka ketiga yang Anda laporkan harus Anda taksir, tetapi taksirannya hanya boleh 0 atau 5. Karena ujung benda lebih sedikit dari 15,6 cm, maka nilai taksirannya adalah 5. Jadi, pengukuran benda menggunakan mistar tersebut dapat Anda laporkan sebagai berikut. Panjang benda = l = x0 x = (15,6 ± 0,05) cm Arti dari laporan pengukuran tersebut adalah Anda tidak tahu nilai x (panjang benda) yang sebenarnya. Namun, setelah dilakukan pengukuran sebanyak satu kali Anda mendapatkan nilai 15,6 cm lebih sedikit atau antara 15,60 cm sampai 15,70 cm. Secara statistik ini berarti ada jaminan 100% bahwa panjang benda terdapat pada selang 15,60 cm sampai 15,7 cm atau (15,60 x 15,70) cm. Ketidakpastian pada Pengukuran Berulang Agar mendapatkan hasil pengukuran yang akurat, Anda dapat melakukan pengukuran secara berulang. Lantas bagaimana cara melaporkan hasil pengukuran berulang? Pada pengukuran berulang Anda akan mendapatkan hasil pengukuran sebanyak N kali. Berdasarkan analisis statistik, nilai terbaik untuk menggantikan nilai benar x0 adalah nilai rata- rata dari data yang diperoleh ( 0x ). Sedangkan untuk nilai ketidakpastiannya ( x ) dapat digantikan oleh nilai simpangan baku nilai rata-rata sampel. Secara matematis dapat ditulis sebagai berikut. x0 = 1 2 3 ... i N xx x x x N N x = 2 2 – ( )1 – 1 i iN x x N N Keterangan: x0 : hasil pengukuran yang mendekati nilai benar x : ketidakpastian pengukuran N : banyaknya pengkuran yang dilakukan Pada pengukuran tunggal nilai ketidakpastiannya ( x ) disebut ketidakpastian mutlak. Makin kecil ketidakpastian mutlak yang dicapai pada pengukuran tunggal, maka hasil pengukurannya pun makin mendekati
- 24. 16 Fisika SMA/MA Kelas X kebenaran. Nilai ketidakpastian tersebut juga menentukan banyaknya angka yang boleh disertakan pada laporan hasil pengukuran. Bagaimana cara menentukan banyaknya angka pada pengukuran berulang? Cara menentukan banyaknya angka yang boleh disertakan pada pengukuran berulang adalah dengan mencari ketidakpastian relatif pengukuran berulang tersebut. Ketidakpastian relatif dapat ditentukan dengan membagi ketidakpastian pengukuran dengan nilai rata-rata pengukuran. Secara matematis dapat ditulis sebagai berikut. ketidakpastian relatif = 100% x x Setelah mengetahui ketidakpastian relatifnya, Anda dapat menggunakan aturan yang telah disepakati para ilmuwan untuk mencari banyaknya angka yang boleh disertakan dalam laporan hasil pengukuran berulang. Aturan banyaknya angka yang dapat dilaporkan dalam pengukuran berulang adalah sebagai berikut. • ketidakpastian relatif 10% berhak atas dua angka • ketidakpastian relatif 1% berhak atas tiga angka • ketidakpastian relatif 0,1% berhak atas empat angka Suatu pengukuran berulang massa sebuah benda menghasilkan data sebagai berikut: 12,5 g; 12,3 g; 12,8 g; 12,4 g; 12,9 g; dan12,6 g. Laporkan hasil pengukuran berulang tersebut lengkap dengan ketidakpastiannya! Jawab: Sebaiknya Anda buat tabel hasil pengukuran seperti berikut. Contoh 1.4 1. 2. 3. 4. 5. 6. 6N 12,3 12,4 12,5 12,6 12,8 12,9 75 50ix , 151,29 153,76 156,25 158,76 163,84 166,41 2 950 31ix , PercobaanKe- xi ( gram) 2 ix ( gram)
- 25. 17Pengukuran Berdasarkan tabel Anda peroleh N = 6; 75,50ix ; dan 2 950,31ix . Selanjutnya dapat Anda tentukan nilai mendekati benda, ketidak- pastian, dan ketidakpastian relatifnya. x0 = i x N = 75,50 6 = 12,5833 g x = 2 2 – ( )1 – 1 i iN x x N N = 2 6 (950,31) – (75,50)1 6 6 – 1 = 5.701,86 – 5.700,251 6 5 = 1 1,61 6 5 = 0,167 × 0,32 = 0,09 g Ketidakpastian relatif = 100 x % x = 0 09 100 12 83 , % , = 0,7% Menurut aturan yang telah disepakati, ketidakpastian relatif 0,7% berhak atas tiga angka. Jadi, hasil pengukuran dapat dilaporkan sebagai berikut. m = x0 x = (12,5 ± 0,09) g
- 26. 18 Fisika SMA/MA Kelas X S oal Kompetensi 1.3 Kolom Diskusi 1.1 Diskusikan bersama teman sebangku Anda dan laporkan hasilnya kepada guru, tentang cara menentukan ketidakpastian pada pengu- kuran massa dan waktu dan berilah contohnya! 1. Sebutkan beberapa instrumen pengukuran panjang, massa, waktu dan berikan penjelasan kelebihan dan kekurangannya! 2. Bagaimana cara Anda untuk menghindari kesalahan-kesalahan yang mungkin terjadi pada suatu pengukuran? Jelasakan! 3. Bagaimana cara Anda agar memperoleh nilai ketidakpastian yang lebih baik dengan menggunakan instrumen pengukuran yang sa- ma? Jelaskan! 4. Diketahui hasil pengukuran berulang sebanyak 5 kali terhadap kuat arus pada suatu rangkaian berturut-turut adalah sebagai berikut: 5 mA; 6 mA; 5,6 mA; 6,1 mA; dan 5,4 mA. Laporkan hasil pengukuran tersebut beserta nilai ketidakpastiannya! E. Vektor Pada awal bab telah disinggung bahwa besaran dalam fisika dapat dikelompokkan berdasarkan ada tidaknya arah, yaitu besaran skalar dan besaran vektor. Besaran skalar adalah besaran yang hanya mempunyai nilai (besar) saja. Contoh besaran skalar, antara lain, massa, panjang, waktu, volume, energi, dan muatan listrik. Anda dapat menyatakan besaran skalar hanya dengan menyatakan nilainya saja. Misalnya, massa Acong 35 kg, panjang pensil 20 cm, dan volume bak mandi 1.000 liter. Besaran skalar selalu bernilai positif. Besaran vektor adalah besaran yang mempunyai nilai (besar) dan arah. Contoh besaran vektor, antara lain, perpindahan, kecepatan, percepatan, momentum, dan gaya. Untuk menyatakan besaran vektor, harus meng- gunakan nilai (angka) dan disebutkan arahnya. Misalnya, Nisa berlari ke utara dengan kecepatan 5 km/jam dan Robert menggeser almari sejauh 3 meter ke barat. 1. Penulisan dan Penggambaran Vektor Sebuah vektor dalam buku cetakan biasanya dinyatakan dalam lambang huruf besar yang dicetak tebal (bold), misal: A, B, atau R. Untuk tulisan tangan sebuah vektor dilambangkan dengan sebuah huruf kecil
- 27. 19Pengukuran yang diberi tanda anak panah di atasnya, misalnya: a , b , atau r . Sebuah vektor juga dapat dilambangkan dengan dua huruf dan tanda anak panah di atasnya, misalnya KKKH AB . Pada penulisan nilai atau besar vektor, untuk buku cetakan biasanya menggunakan huruf besar miring (italic), seperti A, B, atau R, sedangkan tulisan tangan dinyatakan dengan sebuah huruf besar dengan anak panah di atasnya beserta tanda harga mutlak, seperti: A , B , atau R . Sebuah vektor digambarkan dengan anak panah yang terdiri atas pangkal dan ujung. Panjang anak panah menyatakan besar vektor, sedangkan arah anak panah menyatakan arah vektor (dari pangkal ke ujung). Perhatikan Gambar 1.7 berikut! (a) (b) Pada Gambar 1.7(a) menunjukkan sebuah vektor C dengan titik tangkap (pangkal) A, ujungnya di titik B, arahnya dari A ke B, dan besar vektor diwakili panjang anak panah. Sedangkan Gambar 1.7(b), merupakan vektor yang menyatakan sebuah gaya F sebesar 3 N dan memiliki arah ke kiri. Dua buah vektor dikatakan sama apabila besar dan arahnya sama. Sebuah vektor dikatakan negatif apabila mempunyai arah yang berlawanan dengan vektor yang dijadikan acuan. 2. Resultan Vektor Beberapa vektor dapat dijumlahkan menjadi sebuah vektor yang disebut resultan vektor. Resultan vektor dapat diperoleh dengan beberapa metode, yaitu metode segitiga, metode jajargenjang, poligon, dan analitis. a. Metode Segitiga Untuk mengetahui jumlah dua buah vektor Anda dapat menggunakan metode segitiga. Langkah-langkahnya adalah sebagai berikut. 1) Lukislah vektor pertama sesuai dengan nilai dan arahnya, misalnya A! 2) Lukislah vektor kedua, misalnya B, sesuai nilai dan arahnya dengan titik tangkapnya berimpit pada ujung vektor pertama! Gambar 1.7 (a) Vektor C dan (b) Vektor gaya F. A C B F = 3 N
- 28. 20 Fisika SMA/MA Kelas X 3) Hubungkan titik tangkap vektor pertama (A) dengan ujung vektor kedua (B)! Untuk lebih jelasnya perhatikan gambar berikut! Selisih dua buah vektor dapat diketahui dengan cara seperti penjumlahan vektor. Misalnya, selisih dua buah vektor A dan B adalah C, juga dapat dinyatakan C = A – B atau C = A + (-B). Hal ini menunjukan bahwa selisih antara vektor A dan B adalah hasil penjumlahan vektor A dan -B, dengan -B adalah vektor yang berlawanan arah dengan B tetapi nilainya sama dengan B. Perhatikan gambar berikut! b. Metode Jajargenjang Anda dapat memperoleh resultan dua buah vektor dengan metode jajargenjang. Pada metode jajargenjang terdapat beberapa langkah, yaitu sebagai berikut. 1) Lukis vektor pertama dan vektor kedua dengan titik pangkal berimpit (Gambar 1.10(a))! 2) Lukis sebuah jajargenjang dengan kedua vektor tersebut sebagai sisi- sisinya (Gambar 1.10(b))! 3) Resultan kedua vektor adalah diagonal jajargenjang yang titik pangkalnya sama dengan titik pangkal kedua vektor. Perhatikan (Gam- bar 1.10(c))! Gambar 1.8 Penjumlahan vektor dengan metode segitiga. Gambar 1.9 Selisih vektor. (b) B A A – B (a) B A B A (a) (b) A B A + B
- 29. 21Pengukuran Pada metode jajargenjang, satu kali lukisan hanya dapat digunakan untuk mencari resultan dua buah vektor. Untuk resultan yang terdiri atas tiga buah vektor diperlukan dua jajargenjang, empat buah vektor diperlukan tiga jajargenjang, dan seterusnya. c. Metode Poligon Metode poligon dapat digunakan untuk menjumlahkan dua buah vektor atau lebih, metode ini merupakan pengembangan dari metode segitiga. Langkah-langkah menentukan resultan beberapa vektor dengan metode poligon adalah sebagai berikut. 1) Lukis vektor pertama (lihat Gambar 1.11(a))! 2) Lukis vektor kedua, dengan pangkalnya berimpit di ujung vektor per- tama (lihat Gambar 1.11(b))! 3) Lukis vektor ketiga, dengan pangkalnya berimpit di ujung vektor kedua dan seterusnya hingga semua vektor yang akan dicari resultannya telah dilukis (lihat Gambar 1.11(c))! 4) Vektor resultan atau vektor hasil penjumlahannya diperoleh dengan menghubungkan pangkal vektor pertama dengan ujung dari vektor yang terakhir dilukis (lihat Gambar 1.11(d))! d. Metode Analisis Metode yang paling baik (tepat) untuk menentukan resultan beberapa vektor dan arahnya adalah metode analisis. Metode ini, mencari resultan dengan cara perhitungan bukan pengukuran, yaitu menggunakan rumus kosinus dan mencari arah vektor resultan dengan menggunakan rumus sinus. Gambar 1.10 Penjumlahan vektor dengan metode jajargenjang. B A + B A B B AA (c)(a) (b) A AA A B B B C C A + B + C Gambar 1.11 Penjumlahan vektor dengan metode poligon. (d)(c)(b)(a)
- 30. 22 Fisika SMA/MA Kelas X 1) Menentukan Resultan Vektor Menggunakan Rumus Kosinus Untuk menentukan vektor resultan secara matematis dapat Anda gunakan rumus kosinus, yaitu sebagai berikut. R = 2 2 1 2 1 22 · · cosF F F F Keterangan: R : resultan vektor F1 : vektor pertama F1 : vektor kedua : sudut apit antara kedua vektor Diketahui dua buah vektor, masing-masing besarnya 8 N dan 6 N. Tentukan nilai resultan kedua vektor tersebut, jika titik pangkalnya berimpit dan membentuk sudut 60o ! Diketahui : F1 = 8 N F2 = 6 N = 60° Ditanyakan : R = ...? Jawab : R = 2 2 1 2 1 22 · ·cosF F F F = 2 2 8 6 2 · 8 · 6 cos 60 = (64 36) 24 = 124 Jadi, nilai resultannya adalah 124 N. 2) Menentukan Arah Resultan Vektor Menggunakan Rumus Sinus Anda ketahui bahwa vektor merupakan besaran yang mempunyai nilai dan arah. Untuk menentukan arah dari vektor resultan terhadap salah sa- tu vektor komponennya dapat digunakan persamaan sinus. Perhatikan Gambar 1.12! Contoh 1.5 8 N 6N R 60°
- 31. 23Pengukuran Diketahui dua buah vektor, F1 dan F2 membentuk sudut . Sudut antara vektor resultan (R) dengan vektor F1 adalah , sedangkan sudut antara resultan (R) dan vektor F2 adalah - . Secara matematis persamaan ini dapat ditulis sebagai berikut. 1 2 sin sin ( ) sin F FR Diketahui dua buah vektor masing-masing panjangnya 8 cm dan 6 cm. Jika kedua vektor berimpit dan saling tegak lurus, maka tentukan arah resultan vektor tersebut terhadap kedua vektor tersebut! Diketahui : F1 = 8 cm F2 = 6 cm = 90° (tegak lurus) Ditanyakan : a. = ...? b. ( ) = ...? Jawab : Anda cari terlebih dahulu resultan kedua vektor. R = 2 2 1 2 1 22 · ·cosF F F F = 2 2 8 6 2 · 8 · 6 cos90 = 64 36 0 = 100 = 10 cm Contoh 1.6 – F2 R Gambar 1.12 Menentukan arah vektor. F1
- 32. 24 Fisika SMA/MA Kelas X Fx Fy Y X F Gambar 1.13 Menguraikan vektor. a. Arah vektor resultan (R) terhadap vektor F1 . 2 sin sin FR sin = 2 sinF R = 8 sin 90 10 = 8 1 10 sin = 0,8 = 53° b. Arah resultan vektor (R) terhadap vektor F1 . ( ) = 90° – 53° = 37° 3. Menguraikan Vektor Setelah memahami cara menjumlahkan vektor, Anda akan mempelajari cara menguraikan sebuah vektor. Sebuah vektor dapat diuraikan menjadi dua buah vektor atau lebih. Pada materi ini, Anda hanya akan mempelajari cara menguraikan sebuah vektor menjadi dua buah vektor yang saling tegak lurus, yaitu pada sumbu X dan sumbu Y. a. Menentukan Komponen Sebuah Vektor yang Besar dan Arahnya Diketahui Vektor komponen adalah dua buah vektor atau lebih yang menyusun sebuah vektor. Setiap vektor dapat diuraikan menjadi dua buah vektor yang saling tegak lurus. Perhatikan Gambar 1.13! Misalkan, diketahui sebuah vektor F yang dapat diuraikan menjadi vektor komponen pada sumbu X, yaitu FX dan vektor komponen pada sumbu Y, yaitu Fy . Jika sudut antara vektor F dengan sumbu X positif adalah , maka besar vektor komponen FX dan Fy dapat Anda peroleh dengan menggunakan persamaan sinus dan kosinus. FX = F cos dan Fy = F sin
- 33. 25Pengukuran Tentukan besar komponen-komponen vektor dari sebuah vektor gaya sebesar 20 N pada arah 60° terhadap sumbu X positif! Diketahui : F = 20 N : = 60° Ditanyakan : a. FX = ...? b. Fy = ...? Jawab : a. FX = F cos = 20 cos 60° = 20 · 0,5 = 10 N b. Fy = F sin = 20 sin 60° = 20 · 1 3 2 = 10 3 N b. Menentukan Besar dan Arah Sebuah Vektor Jika Kedua Vektor Komponennya Diketahui Misalkan, jika komponen-komponen vektor F adalah Fx dan Fy , maka besar vektor F dapat ditentukan dengan menggunakan dalil Phytagoras pada segitiga siku-siku. Arah vektor tersebut dapat ditentukan dengan mengguna- kan perbandingan trigonometri tangen. Besar vektor F adalah sebagai berikut. F = 2 2 x yF F Arah vektor F adalah sebagai berikut. tan = y x F F Untuk menentukan arah vektor (sudut yang dibentuk terhadap sumbu X positif) kamu harus memperhatikan tanda Fx dan Fy , tanda tersebut akan membantu Anda dalam menentukan kuadran dalam vektor koordinat. Perhatikan tabel berikut! Contoh 1.7
- 34. 26 Fisika SMA/MA Kelas X S oal Kompetensi 1.5 Tentukan besar dan arah vektor gaya F, jika diketahui vektor kompo- nennya sebesar 8 N dan 6 N! Diketahui : Fx = 8 N Fy = 6 N Ditanyakan: a. F = ...? b. tan = ...? Jawab : a. F = 2 2 x yF F = 2 2 8 6 = 100 = 10 N b. tan = y x F F = 8 6 = 36,98° 1. Sebutkan kelemahan-kelemahan dalam menentukan resultan vek- tor dan arahnya dengan menggunakan metode grafis dan analitis! 2. Sebuah gaya sebesar 40 N bekerja pada benda dengan membentuk sudut 60° terhadap sumbu X. Tentukan komponen vektor pada sumbu X dan Y! No Kuadran I II III IV 1. 2. Fx Fy + + – + – – + – Contoh 1.8
- 35. 27Pengukuran I nfo Kita T k hoo Christiaan Huygens (1629 - 1695) Christiaan Huygens adalah ahli fisika, ahli astronomi, penemu jam bandul, penemu teori gelombang cahaya, dan masih banyak pene- muan lainnya. Huygens lahir di Den Haag, Be- landa pada tanggal 14 April 1629. Sampai umur 16 tahun Huygens tidak per- nah duduk di bangku sekolah. Ia dididik di ru- mah, oleh guru lesnya. Baru sesudah itu Huygens masuk ke Universitas Leiden. Untuk mengukur waktu kejadian-kejadian astronomis, Huygens membuat jam yang mampu mengukur waktu hingga ke hitungan menit. Ia menggunakan gerakan maju-mundur yang biasa terjadi pada sebuah pendulum yang berayun untuk mengendalikan gigi-gigi jam tersebut. Ia juga menggunakan serangkaian bobot berantai yang jatuh perlahan-lahan untuk memastikan pendulumnya bergerak terus-menerus. Huygens mempresentasikan modelnya yang pertama kepada pemerintah Belanda dan menggambarkannya dalam terbitan tahun 1658. Jam pendulum itu dikenal sebagai jam “kakek” dan dipakai di seluruh dunia selama hampir 300 tahun. Huygens meninggal tanggal 8 Juli 1695 di Den Haag, pada usia 66 tahun setelah banyak berkarya. (Dikutip seperlunya dari 100 Ilmuwan, John Hudson Tiner, 2005) Alat Ukur Modern Pengukuran sudah dilakukan manusia sejak beribu tahun yang lalu. Sepanjang masa itu, berbagai alat ukur sudah ditemukan, mulai dari alat ukur sederhana sampai alat ukur modern. Beberapa alat ukur modern yang telah ditemukan adalah pita sonik, sinar infra merah, dan radar. Pita sonik adalah alat yang dipakai untuk mengukur jarak suatu benda dengan prinsip pemantulan bunyi. Alat ini mengeluarkan bunyi “bip-bip” ultrasonik yang tidak dapat didengar manusia. Pada saat digunakan, pita sonik mengeluarkan bunyi ultrasonik yang akan Sumber: Jendela Iptek
- 36. 28 Fisika SMA/MA Kelas X memantul setelah menumbuk benda yang diukur jaraknya. Waktu yang diperlukan bunyi untuk sampai kembali ke alat ukur menunjukkan jarak benda ke alat ukur tersebut. Sinar inframerah dapat meng- ukur jarak sampai ketepatan yang tinggi (2 mm tiap untuk jarak 3 km). Alat ukur ini dapat men- deteksi benda-benda yang bergerak maupun diam, serta dapat menen- tukan sudut horizontal dan vertikalnya. Ukuran-ukuran yang diperoleh dari sinar inframerah disimpan dalam kartu data elek- tronik yang selanjutnya dipindahkan ke komputer untuk dianalisis. Radar merupakan alat ukur tercanggih yang pernah dibuat manusia. Alat ini biasanya dipasang di pesawat, kapal dan di markas angkatan perang. Gelombang radar dipancarkan dari antena radar ke segala arah. Gelombang ini akan terpantul kembali ke radar bila menumbuk benda, baik yang bergerak maupun diam. Gelombang yang kembali dapat diubah secara elektronik menjadi gambar di layar. Sistem canggih ini dapat menentukan posisi benda, benda tersebut bergerak atau diam, dan kecepatan serta arahnya jika bergerak. Sumber: Jendela Iptek
- 37. 29Pengukuran Rangkuman 1. Satuan yang dipakai saat ini adalah satuan Sistem Internasional (SI). 2. Ada tujuh besaran pokok dalam SI, yaitu panjang, massa, waktu, suhu, kuat arus listrik, intensitas cahaya, dan jumlah mol. 3. Besaran pokok adalah besaran yang digunakan sebagai dasar untuk menetapkan besaran yang lain. 4. Besaran turunan adalah besaran yang diperoleh dengan menurunkan besaran pokok. 5. Dimensi suatu besaran adalah cara besaran tersebut tersusun atas besaran-besaran pokoknya. 6. Dimensi mempunyai dua kegunaan, yaitu untuk menentukan satuan dari suatu besaran turunan dan menunjukkan kesetaraan beberapa besaran yang sepintas tampak berbeda. 7. Instrumen pengukuran adalah alat-alat yang digunakan untuk mengukur suatu besaran. Misalnya, panjang dengan mistar, massa dengan neraca, dan waktu dengan jam. 8. Setiap pengukuran pasti terdapat ketidakpastian yang disebabkan beberapa kesalahan, antara lain, kesalahan internal, kesalahan sistematik, dan kesalahan acak. 9. Kesalahan internal adalah kesalahan yang disebabkan keterbatasan pada pengamat saat melakukan pengukuran. 10. Kesalahan sistematik merupakan kesalahan yang disebabkan oleh alat yang digunakan dan atau lingkungan di sekitar alat yang mem- pengaruhi kinerja alat. Misalnya, kesalahan kalibrasi, kesalahan titik nol, kesalahan komponen alat atau kerusakan alat, kesalahan paralaks, perubahan suhu, dan kelembapan. 11. Kesalahan acak adalah kesalahaan yang terjadi karena adanya fluktuasi-fluktuasi halus pada saat melakukan pengukuran. Misalnya, karena adanya gerak brown molekul udara, fluktuasi tegangan listrik, landasan bergetar, bising, dan radiasi. 12. Pengukuran tunggal merupakan pengukuran yang hanya dilakukan sekali saja. 13. Ketidakpastian pada pengukuran tunggal diperoleh dari setengah skala terkecil alat yang digunakan. 14. Pengukuran berulang adalah pengukuran yang dilakukan beberapa kali.
- 38. 30 Fisika SMA/MA Kelas X 15. Nilai yang digunakan sebagai pengganti nilai yang mendekati benar (x0 ) adalah nilai rata-rata dari data yang diperoleh ( 0x ). Secara matematis dapat ditulis sebagai berikut x0 = 1 2 3 ... N ix x x x x N N 16. Ketidakpastian ( x ) pada pengukuran berulang diperoleh dari nilai simpangan baku nilai rata-rata sampel. Secara matematis dapat ditulis sebagai berikut x = 2 2 – ( )1 – 1 i iN x x N N 17. Besaran vektor adalah besaran yang mempunyai nilai (besar) dan arah, antara lain, perpindahan, kecepatan, percepatan, momentum, dan gaya. 18. Resultan vektor merupakan jumlah dari dua atau lebih vektor. 19. Resultan vektor dapat diperoleh dengan beberapa metode, antara lain, metode segitiga, metode jajargenjang, poligon, dan analitis. 20. Rumus mencari resultan vektor dan arahnya dengan metode analisis adalah sebagai berikut. R = 2 2 1 2 1 22 cosF F F F dan 1 2 sin sin ( - ) sin F FR . 20. Vektor komponen adalah dua buah vektor atau lebih yang menyusun sebuah vektor. 21. Rumus mencari resultan vektor dan arahnya yang vektor kompo- nennya diketahui dengan cara berikut. F = 2 2 x yF F dan tan = y x F F
- 39. 31Pengukuran A. Pilihlah jawaban yang benar dengan menuliskan huruf a, b, c, d, atau e di buku tugas Anda! 1. Kelompok besaran berikut yang merupakan besaran turunan adalah …. a. momentum, waktu, dan kuat arus b. kecepatan, usaha, dan massa c. energi, usaha, dan waktu d. berat, panjang , dan massa e. percepatan, usaha, dan massa jenis 2. Besaran-besaran berikut yang yang bukan besaran turunan adalah …. a. percepatan b. gaya c. usaha d. massa e. volume 3. Pasangan besaran fisika berikut yang memiliki satuan sama adalah …. a. usaha dan gaya b. usaha dan energi c. momentum dan gaya d. momentum dan usaha e. energi dan gaya 4. Satuan berat benda adalah …. a. kg m b. kg ms-1 c. kg ms-2 d. kg m2 s-1 e. kg m2 s-2 5. Dimensi dari usaha adalah …. a. [M] [L]2 [T]-2 b. [M] [T]-2 c. [M] [L] [T]-2 d. [M] [L]-1 [T]-1 e. [M] [L]1 [T]-2 P e l a t i h a n
- 40. 32 Fisika SMA/MA Kelas X 6. Kesalahan instrumen yang disebabkan oleh gerak brown digolongkan se- bagai …. a. kesalahan relatif b. kesalahan sistematis c. kesalahan acak d. kesalahan lingkungan e. kesalahan umum 7. Dua vektor P dan Q besarnya 40 dan 20 satuan. Jika sudut antara kedua vektor tersebut sebesar 60°, maka besar dari P – Q adalah .... a. 20 b. 20 3 c. 30 d. 40 3 e. 60 8. Kelompok besaran berikut yang termasuk besaran vektor adalah …. a. perpindahan, gaya, dan percepatan b. gaya, momentum, dan waktu c. gaya, tekanan, dan volume d. perpindahan , massa, dan usaha e. jarak, momentum, dan percepatan 9. Perhatikan gambar di samping! T1 dan T2 merupakan vektor gaya. Agar resultan ketiga vektor gaya sama dengan nol, maka harus berlaku hubungan .... a. T1 + T2 3 – 50 = 0 b. T1 – T2 3 = 0 c. T1 3 + T2 – 50 = 0 d. T1 3 + T2 = 0 e. T1 + T2 3 – 200 = 0 10. Dua buah vektor yang besaranya F1 dan F2 memiliki titik tangkap sama. Jika F1 = F2 = R (dengan R resultan kedua vektor tersebut), maka besarnya sudut apit antara dua vektor tersebut adalah …. a. 30° b. 45° c. 60° d. 90° e. 120° T2 T1 100° 100 N
- 41. 33Pengukuran 11. Sebuah balok memiliki panjang 20 mm, tinggi 15 mm, dan lebar 14 mm. Volume balok dalam m3 adalah …. a. 4,2 × 10-9 b. 4,2 × 10-6 c. 4,2 × 10-4 d. 4,2 × 10-2 e. 4,2 × 10-1 12. Dua buah vektor memiliki pangkal berimpit, dan masing-masing besarnya 3 N dan 4 N. Jika sudut apit antara kedua vektor tersebut 60°, maka vektor resultannya adalah …. a. 34 N b. 35 N c. 37 N d. 38 N e. 39 N 13. Hasil pengukuran panjang dan lebar suatu halaman adalah 12,61 m dan 5,2 m. Menurut aturan angka penting, luas halaman tersebut adalah …. a. 66 m2 b. 65,572 m2 c. 65, 57 m2 d. 65, 5 m2 e. 65 m2 14. Andi berjalan sejauh 5 m ke arah 30° utara dari timur, Cahyo berjalan sejauh 7 m dengan arah 60° timur dari selatan, dan Nana berjalan sejauh 4 m dengan arah 30° barat dari selatan. Jika mereka berangkat dari titik yang sama, maka besar perpindahan total ketiga anak tersebut adalah …. a. 125 – 20 3 b. 125 – 20 c. 25 – 20 3 d. 225 – 20 3 e. 135 20 3 15. Komponen-komponen vektor pada sumbu X dan Y dari vektor P adalah 4 m dan 6 m. Komponen-komponen vektor pada sumbu X dan Y dari vektor (P + Q) adalah 0 dan 9 m. Panjang vektor Q adalah …. a. 10 m d. 5 m b. 9 m e. 4 m c. 6 m
- 42. 34 Fisika SMA/MA Kelas X berimpit 15 16 17 18 0 10 20 B. Kerjakan soal-soal berikut dengan benar! 1. Sebut dan jelaskan dengan bahasa Anda sendiri perbedaan antara besaran pokok dan besaran turunan! 2. Mengapa saat Anda melakukan pengukuran suatu besaran fisis harus di laporkan sedekat mungkin ke skala penuh? Jelaskan dengan bahasa Anda sendiri! 3. Perhatikan gambar berikut! Berdasarkan gambar tersebut, hitunglah hasil pengukurannya! 4. Perhatikan gambar berikut! Jika sin = 3 5 dan sin = 4 5 , maka tentukan resultan keempat gaya pada gambar tersebut! 5. Sebuah pesawat tempur terbang dari sebuah pangkalan angkatan darat pada arah 30° ke timur dari utara sejauh 100 km, kemudian berbelok ke arah timur sejauh 40 3 dan akhirnya berbelok ke utara sejauh 40 km. Tentukan besar dan arah perpindahan pesawat tempur tersebut dari pangkalan angkatan darat! 20 N 20 N 26 N 12 N
- 43. 35Gerak Lurus Pada peluncuran sebuah roket, roket akan menempuh lintasan lurus vertikal ke atas dengan percepatan yang sangat besar. Coba jelaskan, termasuk gerak apakah peristiwa peluncuran roket tersebut? Sumber: Catalogue (GK) 1998 Tujuan Pembelajaran Gerak Lurus Bab II • Anda dapat menganalisis besaran fisika pada gerak dengan kecepatan dan percepatan konstan. K ata Kunci •Dinamika •Velicometer •Kecepatan Sesaat •Gerak Jatuh Bebas •Kecepatan •Kedudukan •Percepatan Sesaat •Spidometer •Jarak •Kelajuan •Percepatan Rata-Rata •Ticker Timer •Kecepatan •Percepatan •Gerak Lurus Beraturan •Gerak Rata-Rata •Kinematika •Perpindahan •Gerak Lurus Berubah Beraturan
- 44. 36 Fisika SMA/MA Kelas X P eta Konsep terdiri atas GLB GLBB Gerak Gerak semu Gerak lurus Titik acuan Gerak relatif – Gerak matahari – Pohon berjalan – Bulan mengikuti ketika kita bergerak Kelajuan Kecepatan Percepatan Besaran Skalar Besaran Vektor Besaran Vektor contoh memiliki terdiri atas merupakan merupakan merupakan Orang naik bus contoh Diam Bergerak Titik acuannya terminal Titik acuannya bus dikatakan jika jika memerlukan v = x t rumus a = v t rumus rumus vt = v0 – a · t s = 2 0 1 2 v t at 2 0 2 – 2tv v as
- 45. 37Gerak Lurus Kolom Diskusi 2.1 Pada kehidupan sehari-hari Anda pasti pernah melihat orang yang berjalan, mobil yang melaju, mangga jatuh dari pohonnya, dan lain sebagainya. Semua itu Anda katakan sebagai contoh gerak. Lantas, apa yang dimaksud dengan gerak? Di SMP Anda telah mempelajari bahwa benda dikatakan bergerak apabila kedudukannya senantiasa berubah terhadap suatu acuan tertentu. Misalnya, Anda sedang duduk di dalam kereta api yang bergerak meninggalkan stasiun. Anda dikatakan bergerak apabila yang dijadikan titik acuan stasiun kereta api, hal ini karena kedudukan Anda terhadap stasiun kerta api senantiasa berubah. Namun, jika yang dijadikan titik acuan kereta api, maka Anda dikatakan tidak bergerak, karena kedudukan Anda dengan kereta api tetap. Pada bab ini Anda akan mempelajari tentang kinematika. Kinematika merupa- kan ilmu yang mempelajari tentang gerak tanpa memperhatikan penyebab timbulnya gerak. Sedangkan ilmu yang mempelajari gerak suatu benda dengan memperhatikan penyebabnya disebut dinamika. Dinamika akan Anda pelajari pada saat Anda mempelajari hukum-hukum Newton. Di SMP Anda telah mempelajari mengenai gerak (gerak semu dan gerak relatif). Sekarang diskusikan dengan teman sebangku Anda tentang arti gerak, macamnya, dan contoh-contohnya. Diskusikan juga tentang orang yang diam apakah dapat dikatakan bergerak! A. Jarak dan Perpindahan Pada fisika, jarak dan perpindahan memiliki pengertian yang berbeda. Jarak diartikan sebagai panjang lintasan yang ditempuh oleh suatu benda dalam selang waktu tertentu, dan merupakan besaran skalar. Perpindahan adalah perubahan kedudukan suatu benda dalam selang waktu tertentu dan merupakan besaran vektor. Perhatikan Gambar 2.1 berikut! Gambar 2.1 Jarak dan perpindahan A B C
- 46. 38 Fisika SMA/MA Kelas X Ucok berjalan dari titik A ke titik B sejauh 8 m, kemudian belok ke kanan sejauh 6 m dan berhenti di C. Total perjalanan yang ditempuh oleh Ucok adalah 8 meter ditambah 6 meter, yaitu 14 meter. Total perjalanan 14 m ini disebut jarak yang ditempuh Ucok. Berbeda dengan jarak, perpindahan Ucok adalah sebagai berikut. Posisi mula-mula Ucok di titik A dan posisi akhirnya dititik C yang besarnya dapat dihitung dengan menggunakan rumus phy-tagoras. Perpindahan Ucok = AC = 2 2 AB BC = 2 2 8 6 = 2 2 64 36 = 100 = 10 m Jadi, Ucok mengalami perpindahan sejauh 10 m. Perhatikan gambar di sam- ping! Ida berlari mengelilingi lapangan sepakbola yang me- miliki panjang 100 m dan lebar 50 m. Ida berangkat dari titik A dan berhenti di titik C dengan melewati titik B. Sementara itu, Adi berlari dari titik A dan berhenti di titik D dengan melewati titik B dan C, pada lapangan yang sama. Tentukan jarak dan perpindahan yang ditempuh Ida dan Adi! Jawab: a. Untuk Ida – Jarak yang ditempuh Ida Jarak = AB + BC = 100 + 50 = 150 m Jadi, jarak yang ditempuh Ida adalah 150 m. – Perpindahan Ida Karena lintasan yang ditempuh Ida berbentuk garis yang saling tegak lurus, maka perpindahannya adalah sebagai berikut. Contoh 2.1 A 50 m D 100 m C B A B C 50 m
- 47. 39Gerak Lurus S oal Kompetensi 2.1 Perpindahan Ida = AC = 2 2 AB BC = 2 2 100 50 = 10000 2500 = 12500 = 111,8 m Jadi, perpindahan yang dialami Ida adalah 111,8 m. b. Untuk Adi – Jarak yang ditempuh Adi Jarak = AB + BC + CD = 100 + 50 + 100 = 250 m Jadi, jarak yang ditempuh Adi adalah 250 m. – Perpindahan Adi Ingat, perpindahan meru- pakan besaran vektor (me- miliki arah). Jika AB Anda nyatakan positif, maka CD bernilai negatif. Oleh ka- rena itu, perpindahan yang dialami Adi adalah sebagai berikut. Perpindahan Adi = AD= (AB +BC) – CD = (100 + 50) – 100 = 150 – 100 = 50 m Jadi, perpindahan yang dialami Adi adalah 50 m. 1. Apa yang dimaksud dengan jarak dan perpindahan? Jelaskan dengan memakai ilustrasi! 2. Mungkinkah besar jarak dan perpindahan sama? Jelaskan dan berikan contohnya! 3. Dapatkah benda yang menempuh jarak tertentu mempunyai per- pindahan nol? Jelaskan! A B C 50 m 111,8 m 100 m A B C 50 m D 100 m A B C 50 m D 100 m
- 48. 40 Fisika SMA/MA Kelas X B. Kecepatan dan Kelajuan Pada kehidupan sehari-hari orang sering menggunakan kata kecepatan meskipun yang dimaksud sebenarnya adalah kelajuan. Misalnya, kereta itu bergerak dengan kecepatan 80 km/jam. Pernyataan ini sebenarnya kurang tepat, karena kalau ingin menyatakan kecepatan, arahnya harus disebutkan. Supaya benar pernyataan tersebut harus diubah menjadi kereta itu bergerak dengan kecepatan 80 km/jam ke arah barat. Pada fisika, kelajuan dan kecepatan merupakan dua istilah yang berbeda. Kelajuan adalah cepat lambatnya perubahan jarak terhadap waktu dan merupakan besaran skalar yang nilainya selalu positif, sehingga tidak memedulikan arah. Kelajuan diukur dengan menggunakan spidometer. Kecepatan adalah cepat lambatnya perubahan kedudukan suatu benda terhadap waktu dan merupakan besaran vektor, sehingga memiliki arah. Kecepatan diukur dengan menggunakan velocitometer. 1. Kecepatan Rata-Rata Suatu benda yang bergerak dalam selang waktu tertentu dan dalam geraknya tidak pernah ber- henti meskipun sesaat, biasanya benda tersebut tidak selalu ber- gerak dengan kelajuan tetap. Ba- gaimana Anda dapat mengetahui kelajuan suatu benda yang tidak selalu tetap tersebut? Perhatikan Gambar 2.2! Wulan berangkat ke sekolah dari rumahnya (titik A) yang berjarak 20 km dengan menggunakan sebuah sepeda motor. Saat melewati jalan lurus, Wulan meningkatkan kelajuan sepeda motornya sampai kelajuan tertentu dan mempertahankannya. Ketika melewati tikungan (titik B dan C), Wulan mengurangi kelajuan sepeda motornya dan kemudian meningkatkannya kembali. Menjelang tiba di sekolah (titik D), Wulan memperlambat kela- juannya sampai berhenti. Setelah sampai di sekolah yang ditempuh dalam waktu 1 jam, Wulan menyadari bahwa angka pada spidometernya telah bertambah sebesar 30 Km. Hal ini menunjukkan jarak yang ditempuh Wulan ke sekolah sebesar 30 km. Pada perjalanan dari rumah ke sekolah, kelajuan Wulan pasti tidak selalu tetap. Saat di jalan yang lurus kelajuannya besar dan saat di tikungan kela- juannya berkurang. Berdasarkan ilustrasi tersebut, kelajuan rata-rata didefi- nisikan sebagai hasil bagi antara jarak total yang ditempuh dengan waktu untuk menempuhnya. B C D 5 km A 20 km 5 km Gambar 2.2 Kecepatan rata-rata dan kecepatan sesaat.
- 49. 41Gerak Lurus Kelajuan rata-rata = Jarak total Waktu tempuh Bagaimana dengan kecepatan rata-rata Wulan? Kecepatan rata-rata adalah hasil bagi antara perpindahan dengan selang waktunya. Secara matematis dapat ditulis sebagai berikut. v = 2 1 2 2 x x t t Keterangan: v : kecepatan rata-rata (ms-1 ) x1 : titik awal (m) x2 : titik akhir (m) t1 : waktu akhir (s) t2 : waktu awal (s) Berdasarkan Gambar 2.2 dan ilustrasi pada uraian di atas, tentukan kelajuan rata-rata dan kecepatan rata-rata Wulan! Jawab: a. Kelajuan rata-rata Wulan Kelajuan rata-rata = Jarak total Waktu tempuh = 5 + 20 + 5 1 = 30 km/jam Jadi, kelajuan rata-rata Wulan adalah 30 km/jam. b. Kecepatan rata-rata Wulan v = 2 1 2 1 – – x x t t = 20 – 0 1 – 0 = 20 km/jam Jadi, kecepatan rata-rata Wulan adalah 20 km/jam. Contoh 2.2
- 50. 42 Fisika SMA/MA Kelas X 2. Kecepatan Sesaat Kelajuan dan kecepatan rata-rata mendeskripsikan kecepatan dan kelajuan dalam suatu jarak tertentu. Jarak dan perpindahan total dari suatu gerak benda dapat panjang atau pendek, misalnya 500 km atau 1 m. Bagaimana cara agar Anda mengetahui kelajuan atau kecepatan sesaat suatu benda yang bergerak pada waktu tertentu? Saat Anda naik kendaraan bermotor, untuk mengetahui kelajuan sesaat Anda tinggal melihat angka yang ditunjuk jarum pada spidometer. Peru- bahan kelajuan akan diikuti perubahan posisi jarum pada spidometer. Untuk menentukan kecepatan sesaat, Anda tinggal menyebutkan besarnya kelajuan sesaat ditambah menyebutkan arahnya. Bagaimana jika Anda tidak naik kendaran bermotor? Kecepatan sesaat suatu benda merupakan kecepatan benda pada suatu waktu tertentu. Untuk menentukannya Anda perlu mengukur jarak tempuh dalam selang waktu ( t ) yang sangat singkat, misalnya 1/10 sekon atau 1/50 sekon. Secara matematis dapat dinyatakan sebagai berikut. v = 0 lim t x t Karena materi limit baru akan Anda pelajari pada mata pelajaran mate- matika di kelas XI, maka persamaan matematis kecepatan sesaat dapat ditulis sebagai berikut. v = x t , dengan t sangat kecil Keterangan x : perpindahan (m) t : selang waktu (s) Kedudukan sebuah mobil yang sedang bergerak dinyatakan oleh persamaan x = 2t2 + 2t – 2, dengan x dalam meter dan t dalam sekon. Hitunglah kecepatan mobil pada saat t = 1 sekon! Jawab: Persamaan kedudukan x = 2t2 + 2t – 2 Untuk t = 1 x1 = 2 (1) + 2 (1) – 2 = 2 Ambil 3 selang waktu ( t ) yang berbeda, misalkan t 1 = 0,1 s, t 2 = 0,01 s, dan t 3 = 0,001 s. Untuk t = 0,1 s t2 = t1 + t = 1 + 0,1 = 1,1 s Contoh 2.3
- 51. 43Gerak Lurus S oal Kompetensi 2.2 x2 = 2(1,1)2 + 2(1,1) - 2 = 2,42 + 2,2 - 2 = 2,62 m v = 2 1 2 2 – – x x t t = 2,62 2 0,1 = 6,2 m/s Untuk t = 0,01 s. t2 = t1 + t = 1 + 0,01 = 1,01 s x2 = 2(1,01)2 + 2(1,01) - 2 = 2,0402 + 2,02 - 2 = 2,0602 m v = 2 1 2 2 – – x x t t = 2,0602 2 0,01 = 6,02 m/s Untuk t = 0,001 s. t2 = t1 + t = 1 + 0,001 = 1,001 s x2 = 2(1,001)2 + 2(1,001) - 2 = 2,004002 + 2,002 - 2 = 2,006002 m v = 2 1 2 2 – – x x t t = 2,006002 2 0,001 = 6,002 m/s Kemudian Anda buat tabel seperti berikut. Berdasarkan tabel di samping, tampak bahwa untuk nilai t yang makin kecil (mendekati nol), kecepatan rata-rata ma- kin mendekati nilai 6 m/s. Oleh karena itu, dapat Anda simpulkan bahwa ke- cepatan sesaat pada saat t = 1 s adalah 6 m/s. 1. Jelaskan dengan bahasa Anda yang dimaksud dengan kelajuan dan kecepatan! 2. Benarkah besarnya kelajuan sesaat sama dengan kecepatan sesaat? Jelaskan! 3. Apakah suatu benda yang bergerak dapat memiliki kecepatan rata-rata nol? Jelaskan! 0,1 0,01 0,001 6,2 6,02 6,002 t (s) v(m/s)
- 52. 44 Fisika SMA/MA Kelas X Kolom Diskusi 2.1 C. Percepatan Bagilah kelas Anda menjadi beberapa kelompok. Setiap kelompok dapat terdiri atas 3-6 anak. Diskusikan bersama anggota kelompok Anda mengenai pewaktu ketik (ticker timer). Bahas mengenai manfaat dan cara menggunakan ticker timer. Tulislah hasil kesimpulan kelompok Anda dan praktikkan di depan kelas tentang cara kelompok Anda menggunakan ticker timer! Percepatan adalah perubahan kecepatan dan atau arah dalam selang waktu tertentu. Percepatan merupakan besaran vektor. Percepatan berharga positif jika kecepatan suatu benda bertambah dalam selang waktu tertentu. Percepatan berharga negatif jika kecepatan suatu benda berkurang dalam selang waktu tertentu. 1. Percepatan Rata-Rata Tiap benda yang mengalami perubahan kecepatan, baik besarnya saja atau arahnya saja atau kedua-duanya, akan mengalami percepatan. Percepatan rata-rata ( a ) adalah hasil bagi antara perubahan kecepatan ( v ) dengan selang waktu yang digunakan selama perubahan kecepatan tersebut ( t ). Secara matematis dapat ditulis sebagai berikut. 2 1 2 1 – – v vv a t t t Keterangan: a : perceptan rata-rata (m/s2 ) v : perubahan kecepatan (m/s) t : selang waktu (s) v1 : kecepatan awal (m/s) v2 : kecepatan akhir (m/s) t1 : waktu awal (s) t2 : waktu akhir (s)
- 53. 45Gerak Lurus Andi mengendarai sepeda motor ke arah utara dipercepat dari ke- adaan diam sampai kecepatan 72 km/jam dalam waktu 5 s. Tentukan besar dan arah percepatan Andi! Diketahui : a. v1 : 0 m/s b. v2 : 72 km/jam = 20 m/s c. t1 : 0 s d. t2 : 5 s Ditanyakan : a. a = …? b. Arah percepatan? Jawab: a. Percepatan rata-rata a = 2 1 2 1 – – v v t t = 20 – 0 5 – 0 = +4 m/s2 b. Tanda positif menunjukkan bahwa arah percepatan searah dengan arah kecepatan. Jadi, arah percepatan Andi ke utara. 2. Percepatan Sesaat Percepatan sesaat adalah perubahan kecepatan dalam waktu yang sangat singkat. Seperti halnya menghitung kecepatan sesaat, untuk menghitung percepatan sesaat, Anda perlu mengukur perubahan kecepatan dalam selang waktu yang singkat (mendekati nol). Secara matematis dapat ditulis sebagai berikut. a = v t , dengan t sangat kecil Sebuah mobil balap bergerak dalam lintasan lurus dan dinyatakan dalam persamaan v(t) = 10 – 8t + 6t2 , dengan t dalam s dan v dalam m/s. Tentukan percepatan mobil balap tersebut pada saat t = 3 s! Jawab: Persamaan kedudukan v(t) = 10 – 8t + 6t2 Untuk t = 3 v(3) = 10 – 8(3) + 6(3)2 = 40 m/s Contoh 2.4 Contoh 2.5
- 54. 46 Fisika SMA/MA Kelas X S oal Kompetensi 2.3 Ambil 3 selang waktu ( t ) yang berbeda, misalkan t 1 = 0,1 s, t 2 = 0,01 s, dan t 3 = 0,001 s. Untuk t = 0,1 s t2 = t1 + t = 3 + 0,1 = 3,1 s v(3,1) = 10 – 8(3,1) + 6(3,1)2 = 42,86 m/s a = 2 1 2 1 – – v v t t = 42,86 40 0,1 = 28,6 m/s2 Untuk t = 0,01 s. t2 = t1 + t = 3 + 0,01 = 3,01 s v(3,01) = 10 – 8(3,01) + 6(3,01)2 = 40,2806 m/s a = 2 1 2 1 – – v v t t = 40,2806 40 0,01 = 28,06 m/s2 Untuk t = 0,001 s. t2 = t1 + t = 3 + 0,001 = 3,001 s v(3,01) = 10 – 8(3,001) + 6(3,001)2 = 40,028006 m/s a = 2 1 2 1 – – v v t t = 40,028006 40 0,001 = 28,006 m/s2 Kemudian Anda buat tabel seperti berikut. Berdasarkan tabel di samping, tampak bahwa untuk nilai t yang makin kecil (mendekati nol), percepatan rata-rata makin mendekati nilai 28 m/s2 . Oleh karena itu, dapat Anda simpulkan bahwa percepatan sesaat pada saat t = 3 s adalah 28 m/s2 . 1. Apakah benda yang bergerak dengan kecepatan tetap dapat dikatakan tidak mengalami percepatan (percepatannya sama dengan nol)? Jelaskan jawaban Anda dengan analisa vektor! 2. Jelaskan dengan bahasa Anda sendiri, mengenai percepatan dan perlajuan! 3. Buatlah soal dan jawaban yang menunjukkan percepatan positif dan negatif! 0,1 0,01 0,001 28,6 28,06 28,006 t (s) v(m/s)
- 55. 47Gerak Lurus T k hoo Albert Einstein (1879 – 1955) Albert Einstein adalah ahli fisika teori ter- besar sepanjang abad 19, ahli pikir yang kreatif di dunia. Einstein dilahirkan di Ulm, Wurttemberg, Jerman, pada tanggal 14 Maret 1879. Di Sekolah Dasar Einstein termasuk anak yang bodoh. Ia hanya tertarik pada fisika dan matematika, terutama bagian teori. Karena ia hanya mau mempelajari fisika dan matematika, maka ia tamat SMP tanpa mendapat ijazah. Pada tahun 1905 Einstein menemukan teori relativitas khusus; dan tahun 1915 ia menerbitkan teori relativitas umum. Kedua teori inilah yang merevolusi pemahaman ilmu pengetahuan akan materi, ruang, dan waktu. Pada umur 21 tahun, Einstein menjadi warga negara Swiss. Ia baru mendapat pekerjaan saat berumur 23 tahun. Namun, tiap ada kesempatan ia selalu berpikir dan mempelajari fisika teori. Dalam teori relativitas khusus, Einstein memulai dengan asumsi bahwa: 1. bila dua buah sistem bergerak lurus beraturan relatif satu sama lain, maka semua peristiwa yang terjadi pada sistem yang satu berlangsung sama pada sistem yang lain; dan 2. kecepatan cahaya adalah sama dalam segala arah, tidak tergantung pada gerak sumber cahaya maupun pengamatnya. Ia menyimpulkan bahwa waktu itu relatif dan batas atas kecepatan adalah kecepatan cahaya dalam ruang hampa udara. Einstein jugalah yang menemukan persamaan E = mc2 , suatu hubungan antara energi (E), massa (m), dan kecepatan cahaya (c). Persamaan ini yang menjelaskan besarnya energi yang dihasilkan oleh matahari dan reaksi-reaksi nuklir. Dalam teori relativitas umum, Einstein menjelaskan gravitasi sebagai akibat kelengkungan ruang. Ia meramalkan bahwa gravitasi matahari akan membelokkan jalannya cahaya bintang. Foto-foto yang diambil selama gerhana matahari tahun 1919 menegaskan teori relativitas umum Einstein dan menjadikannya terkenal di seluruh dunia. Pada tahun 1939, Einstein mengirim surat kepada Presiden Franklin D. Roosevelt, mendorong AS untuk mengembangkan bom atom. Namun, setelah PD II Einstein menjadi sangat aktif dalam gerakan penghapusan senjata nuklir. Ia meninggal dunia pada tanggal 18 April 1955 di Princeton, New Jersey, AS, pada umur 76 tahun, setelah banyak berkarya. (Dikutip seperlunya dari 100 Ilmuwan, John Hudson Tiner, 2005) Sumber: Jendela Iptek, Energi
- 56. 48 Fisika SMA/MA Kelas X Kegiatan 2.1 pewaktu ketik papan luncur troli D. Gerak Lurus Beraturan (GLB) Di SMP Anda telah mempela- jari tentang gerak lurus beraturan (GLB). Gerak lurus beraturan (GLB) adalah gerak suatu benda dengan kecepatan tetap. Di buku lain, GLB sering didefinisikan sebagai gerak suatu benda pada lintasan lurus dengan kecepatan tetap. Hal ini di perbolehkan karena kecepatan tetap memiliki arti besar maupun arahnya tetap, sehingga kata kecepatan boleh diganti dengan kata kelajuan. Contoh GLB yang mudah Anda temui adalah gerak kereta yang sedang melaju pada lintasan yang lurus dan datar. Untuk lebih memahami arti gerak lurus beraturan, lakukanlah kegiatan berikut! Gerak Lurus Beraturan A. Tujuan Anda dapat menyelidiki gerak lurus beraturan (GLB) suatu benda dengan pewaktu ketik (ticker timer). B. Alat dan Bahan 1. Pewaktu ketik 2. Mobil-mobilan 3. Gunting 4. Papan kayu 5. Beberapa buah batu bata C. Langkah Kerja 1. Buatlah sebuah lan- dasan miring dengan mengganjal salah satu ujung papan dengan mengguna- kan batu bata (perha- tikan gambar di sam- ping)! Gambar 2.3 Kereta yang sedang melaju. Sumber: Angkutan dan Komunikasi
- 57. 49Gerak Lurus 2. Aturlah kemiringan landasan sedemikian rupa sehingga saat mobil-mobilan diletakkan di puncak landasan tepat meluncur ke bawah (jika mobil-mobilan meluncur makin lama makin cepat, maka kemiringan landasan harus dikurangi)! 3. Hubungkan pewaktu ketik dengan mobil-mobilan dan biar- kan bergerak menuruni landasan sambil menarik pita ketik! 4. Guntinglah pita yang ditarik oleh mobil-mobilan, hanya ketika mobil-mobilan bergerak pada landasan miring! 5. Bagilah pita menjadi beberapa bagian, dengan setiap bagian terdiri atas 10 titik/ketikan! 6. Tempelkan setiap potongan pita secara berurutan ke sam- ping! 7. Amati diagram yang Anda peroleh dari tempelan-tempelan pita tadi, kemudian tulislah karakteristik dari gerak lurus beraturan! Pada kegiatan di atas Anda memperoleh diagram batang yang sama panjang. Hal itu berarti kecepatan potongan adalah sama. Jadi, dapat Anda nyatakan bahwa dalam GLB, kecepatan benda adalah tetap. Bagaimanakah bentuk grafik kedudukan terhadap waktu pada GLB? Potonglah pita pada kegiatan di atas dengan setiap bagian terdiri atas 5 titik, 10 titik, 15 titik, dan seterusnya. Susunlah potongan-potongan tersebut sehingga akan Anda peroleh gambar grafik seperti Gambar 2.4. Gambar 2.4 Grafik kedudukan terhadap waktu dari gerak lurus beraturan. v t O O x t t x x tO
- 58. 50 Fisika SMA/MA Kelas X Contoh 2.6 Gambar 2.5 Garfik x – t gerak lurus beraturan apabila kedudukan x0 titik berimpit dengan titik acuan nol. x t x0 Pada Gambar 2.4 terlihat bahwa grafik kedudukan (x) terhadap selang waktu (t) berbentuk garis lurus dan miring melalui titik asal O (0,0). Kemiringan pada grafik menunjukkan kecepatan tetap dari GLB. Makin cu- ram kemiringannya, makin besar kecepatan benda yang diselidiki. Jika peru- bahan kedudukan dinyatakan dengan dan selang waktu, maka Anda dapat menyatakan hubungannya sebagai berikut. v = x t Karena dalam GLB kecepatan- nya tetap, maka kecepatan rata- rata sama dengan kecepatan sesaat. Untuk kedudukan awal x = x0 pada saat t0 = 0, maka x = x – x0 dan t = t – t0 = t – 0 = t. Oleh karena itu, persamaan di atas dapat ditulis sebagai berikut. x = v · t x – x0 = v · t x = x0 + v · t Icha berlari pada lintasan lurus dan menempuh jarak 100 m dalam 10 sekon. Tentukan kecepatan dan waktu yang diperlukan Icha untuk menempuh jarak 25 m! Diketahui : a. x = 100 m b. t = 10 s Ditanyakan : a. v = …? b. t = …? (jika x = 25 m) Jawab: a. Kecepatan Icha v = x t = 100 10 = 10 m/s
- 59. 51Gerak Lurus S oal Kompetensi 2.4 v (ms-1 ) t (s) b. Waktu untuk menempuh jarak 25 m x = v × t t = x v = 25 10 = 2,5 s 1. Apakah benar jika GLB di- artikan sebagai gerak ben- da yang memiliki kecepa- tan tetap? Jelaskan! 2. Berdasarkan gambar grafik di samping. Manakah dari kedua benda tersebut yang bergerak lebih lambat? Je- laskan! 3. Dua buah kereta bergerak pada rel lurus yang bersebelahan dengan arah yang berlawanan. Kereta pertama bergerak dari stasiun A dengan kelajuan 60 km/jam dan 10 menit kemudian kereta kedua bergerak dari stasiun B dengan kelajuan 100 km/ jam. Apabila jarak stasiun A dan B 20 km, maka tentukan tempat kereta tersebut berpapasan! E. Gerak Lurus Berubah Beraturan Anda telah mempelajari mengenai gerak lurus berubah beraturan (GLBB) saat duduk di bangku SMP. Suatu benda yang kecepatannya dinaikkan atau diturunkan secara beraturan terhadap waktu dan lintasannya berupa garis lurus, maka benda tersebut telah melakukan gerak lurus berubah beraturan. GLBB adalah gerak suatu benda pada lintasan garis lurus yang percepatannya tetap. Percepatan tetap menunjukkan bahwa besar dan arahnya sama. Untuk lebih memahami mengenai GLBB lakukanlah kegiatan berikut!
- 60. 52 Fisika SMA/MA Kelas X Kegiatan 2.3 pewaktu ketik papan luncur troli Gerak Lurus Berubah Beraturan A. Tujuan Anda dapat menyelidiki gerak lurus berubah beraturan pada suatu benda dengan menggunakan pewaktu ketik. B. Alat dan Bahan 1. Pewaktu ketik 2. Mobil-mobilan 3. Gunting 4. Papan kayu 5. Beberapa buah batu bata C. Langkah Kerja 1. Buatlah sebuah landasan miring dengan mengganjal salah satu ujung papan dengan menggunakan batubata (perhatikan gambar di bawah ini)! 2. Aturlah kemiringan landasan sedemikian rupa sehingga saat mobil-mobilan dapat meluncur (ingat, roda dan papan luncur harus bersih dari debu)! 3. Hubungkan pewaktu ketik dengan mobil-mobilan dan biar- kan bergerak menuruni landasan sambil menarik pita ketik! 4. Guntinglah pita yang ditarik oleh mobil-mobilan, hanya ketika mobil-mobilan bergerak pada landasan miring! 5. Bagilah pita menjadi beberapa bagian, dengan setiap bagian terdiri atas 10 titik/ketikan! 6. Tempelkan setiap potongan pita secara berurutan ke sam- ping!
- 61. 53Gerak Lurus 7. Amati diagram yang Anda peroleh dari tempelan-tempelan pita tadi, kemudian tulislah karakteristik dari gerak lurus berubah beraturan! Pada Kegiatan 2.3 Anda memperoleh diagram batang yang panjangnya selalu berubah meskipun sama-sama terdiri atas 10 ketikan. Pada grafik tersebut juga tampak bahwa tiap potongan yang diurutkan ke samping bertambah secara tetap. Hal ini menunjukkan mobil-mobilan yang menarik pewaktu ketik mengalami pertambahan kecepatan yang tetap. Sehingga dapat dikatakan mobil-mobilan tersebut mengalami gerak lurus berubah beraturan (GLBB). Secara matematis dapat ditulis sebagai berikut. 0 – – t ov vv a t t t Jika pada saat t1 = 0 benda telah memiliki kecepatan vo dan pada saat t2 = t benda memiliki kecepatan vt , maka persamaannya menjadi seperti berikut. 0– – 0 tv v a t 0–tv v a t atau vt = v0 + a · t 0 2 4 8 10 12 1 2 3 4 5 6 6
- 62. 54 Fisika SMA/MA Kelas X Ingat, benda yang bergerak dengan percepatan tetap menunjukkan kece- patan benda tersebut bertambah secara beraturan. Oleh karena itu, jika diketahui kecepatan awal dan kecepatan akhir, maka kecepatan rata-rata benda sama dengan separuh dari jumlah kecepatan awal dan kecepatan akhir. 0 2 tv v v 0 0 · 2 v v a t v 0 1 2 v v at Apabila s merupakan perpindahan yang ditempuh benda dalam interval waktu (t), maka persamaan menjadi sebagai berikut. · s v s v t t 2 0 1 2 s v t at Selanjutnya, untuk dapat menentukan kecepatan akhir sebuah benda yang mengalami percepatan tetap pada jarak tertentu dari kedudukan awal tanpa mempersoalkan selang waktunya, Anda dapat menghilangkan peubah t dengan mensubstitusikan persamaan 0–tv v t a (diperoleh dari persamaan vt = v0 + a · t) ke dalam persamaan 2 0 1 2 s v t at s = 2 0 0 0 – –1 2 t tv v v v v a a a = 2 2 2 0 0 0 0 2 – – 2 2 t t tv v v v v v va a a = 2 2 2 0 0 0 02 – 2 – 2 2 2 t t tv v v v v v v a a s = 2 2 0– 2 tv v a 2 2 0 2tv v as
- 63. 55Gerak Lurus Grafik hubungan v dan t serta s dan t pada gerak lurus berubah beraturan (GLBB) adalah sebgai berikut. 1. Grafik (v - t) Berdasarkan persamaan vt = v0 + a · t, Anda dapat melukiskan grafik hubungan antara v dan t sebagai berikut. Gambar 2.6 Grafik v – t gerak lurus berubah beraturan. Grafik pada Gambar 2.6 menunjukkan bahwa perpindahan yang ditempuh benda (s) dalam waktu (t) sama dengan luas daerah di bawah grafik yang dibatasi oleh sumbu v dan t (daerah yang diarsir). s = luas trapesium OABD = luas segi empat OACD + luas segitiga ABC = 0 1 · · 2 at t v t s = 2 0 1 2 v t at 2. Grafik (s - t) Berdasarkan persamaan s = 2 0 1 2 v t at , dengan v0 dan a Anda anggap konstan, Anda dapat melukiskan grafik hubungan antara s dan t sebagai berikut. A B C D v0 0 at vt v0 v t t s t s = 2 0 1 2 v t at 0 Gambar 2.7 Grafik s – t gerak lurus berubah beraturan.
- 64. 56 Fisika SMA/MA Kelas X Persamaan-persamaan GLBB yang telah Anda bahas di depan merupakan persamaan untuk gerakan dipercepatan beraturan. Untuk persamaan-persamaan GLBB yang diperlambat beraturan adalah sebagai berikut. vt = v0 – a · t s = 2 0 1 2 v t at 2 2 0 – 2tv v as 1. Sitompul mengendarai sepeda motor balap dengan percepatan 4 m/s2 . Tentukanlah kecepatan Sitompul setelah bergerak selama 10 sekon, jika kecepatan awalnya nol! Diketahui : a. a = 4 m/s2 b. t = 10 s c. v0 =0 Ditanyakan: vt = …? Jawab: vt = v0 + a · t = 0 + 4 · 10 = 40 m/s Jadi, kecepatan Sitompul setelah 10 sekon adalah 40 m/s 2. Dari kecepatan 15 m/s, Aseng mempercepat kecepatan mobilnya dengan percepatan tetap 2 m/s2 . Tentukan waktu yang diperlukan Aseng untuk menempuh jarah 54 meter! Diketahui : a. a = 2 m/s2 b. s = 54 m c. v0 = 15 m/s Ditanyakan : t = …? Jawab: s = 0 1 2 v t at 54 = 21 15 2 2 t t 54 = t2 + 15t 0 = t2 + 15t – 54 0 = (t + 18) (t – 3) Contoh 2.7
- 65. 57Gerak Lurus K olom Ilmuwan S oal Kompetensi 2.4 Untuk 0 = t + 18, maka t = -18 (hal ini tidak mungkin karena mobil dipercepat bukan diperlambat) Untuk 0 = t – 3, maka t = 3 (pengganti t yang benar karena mobil dipercepat) Jadi, waktu yang dibutuhkan Aseng untuk menempuh jarak 54 meter adalah 3 detik. 1. Tuliskan kembali tentang GLBB dengan menggunakan bahasa Anda sendiri! 2. Perhatikan gambar grafik hubungan v dan t sebuah mobil yang bergerak lurus di bawah ini! Berdasarkan grafik di atas, tentukan jarak yang ditempuh mobil dalam 6 sekon! 3. Buatlah contoh gerakan yang kecepatannya negatif tetapi perce- patannya positif! Di SMP Anda telah mempelajari tentang gerak jatuh bebas. Bagilah kelas Anda menjadi beberapa kelompok. Tiap kelompok dapat terdiri atas 5 sampai 8 anak. Buatlah tulisan mengenai gerak jatuh bebas (pengertian, persamaan-persamaan matematis yang ada di dalamnya, contoh soal, dan aplikasi dalam kehidupan sehari-hari). Anda dapat mencari referensi di buku-buku, majalah, surat kabar, atau di internet. Presentasikan tulisan kelompok Anda di depan kelas secara bergiliran dengan kelompok lain. Buatlah kesimpulan setelah semua kelompok mempresentasikan tulisannya dan kumpulkan di meja guru Anda! jarak I waktu
- 66. 58 Fisika SMA/MA Kelas X Rangkuman 1. Kinematika adalah ilmu yang mempelajari tentang gerak tanpa memperhatikan penyebab timbulnya gerak. 2. Jarak adalah panjang lintasan yang ditempuh oleh suatu benda dalam selang waktu tertentu dan merupakan besaran skalar. 3. Perpindahan adalah perubahan kedudukan suatu benda dalam selang waktu tertentu dan merupakan besaran vektor. 4. Kelajuan adalah cepat lambatnya perubahan jarak terhadap waktu dan merupakan besaran skalar yang nilainya selalu positif, sehingga tidak memedulikan arah. 5. Kelajuan diukur dengan menggunakan spidometer. 6. Kecepatan adalah cepat lambatnya perubahan kedudukan suatu benda terhadap waktu dan merupakan besaran vektor, sehingga memiliki arah. 7. Kecepatan diukur dengan menggunakan velicometer. 8. Kecepatan rata-rata adalah hasil bagi antara perpindahan dengan selang waktunya. Secara matematis dapat di tulis 2 1 2 2 – – x xx v t t t 9. Percepatan rata-rata adalah hasil bagi antara perubahan kecepatan dengan selang waktu yang digunakan selama perubahan kecepatan tersebut. Secara matematis dapat ditulis 2 1 2 1 – – v vv a t t t . 10. Gerak lurus beraturan (GLB) adalah gerak suatu benda dengan kece- patan tetap. 11. Secara matematis GLB dapat dinyatakan v = x t 12. GLBB adalah gerak suatu benda pada lintasan garis lurus yang per- cepatannya tetap. 13. Persamaan-persamaan pada GLBB adalah sebagai berikut. a. Untuk GLBB yang dipercepat – vt = v0 + a · t – s = 2 0 1 2 v t at – 2 2 0 2tv v as
- 67. 59Gerak Lurus I nfo Kita b. Untuk GLBB yang diperlambat – vt = v0 – a · t – s = 2 0 1 2 v t at – 2 2 0 – 2tv v as 14. Gerak jatuh bebas adalah gerak yang dijatuhkan tanpa kecepatan awal. Cara Aman Berkendara Pada hari senin (16/10/2006), terjadi tabrakan antara truk dan bus di jalan tol Jakarta-Cikampek. Tabrakan bermula karena truk yang melaju dari arah Cikampek menuju Jakarta tiba-tiba membelok ke kanan, melin- tasi median jalan, dan masuk ke jalur tol arah Jakarta menuju Cikampek. Sementara itu, bus yang sedang melaju cepat ke arah Cikampek tidak dapat menghindari truk yang tiba-tiba muncul di hadapannya, dan tabrakan pun terjadi. Diduga kuat sopir truk mengantuk dan tanpa sadar membanting setir ke kanan sehingga truk masuk ke jalur arah berlawanan. Ada dua hal yang dapat dipelajari dari tabrakan yang menewaskan sembilan orang dan menciderai 10 orang ini. Pertama, jangan mengemudi- kan kendaraan dalam keadaan mengantuk. Berhentilah di tempat peris- tirahatan yang telah disediakan, dan beristirahatlah. Namun, jika sudah terlalu mengantuk, berhentilah di bahu jalan, nyalakan lampu hazard, dan beristirahatlah. Kedua, manusia memiliki keterbatasan dalam mengantisipasi sesuatu yang tiba-tiba muncul di hadapannya. Kodratnya sebagai makhluk pejalan kaki, manusia hanya mampu mengantisipasi sesuatu yang tiba-tiba muncul di hadapannya jika ia bergerak di bawah 10 km/jam. Jika bergerak di atas itu, ia tidak bisa meng- hindar. Kemampuan ini berhubungan dengan kecepatan manusia dalam bereaksi. Umumnya manusia memerlukan 0,8 sampai 1 detik untuk bereaksi. Jika seseorang melajukan kendaran dengan kelajuan 50 km/jam, maka waktu 1 detik untuk bereaksi itu sama dengan 14 meter (dibulatkan). Sebab, 50 km/jam sama dengan 14 m/s. Dan mobil yang melaju 50 km/jam memerlukan 14 m untuk sepenuhnya berhenti. Jadi, jarak total yang diper- lukan untuk sepenuhnya berhenti adalah 28 m. Pada kecepatan sebesar 90 km/jam, total jarak yang diperlukan 70 m. Sedangkan pada kelajuan 130 km/jam, total jarak yang diperlukan 129 m.
- 68. 60 Fisika SMA/MA Kelas X Kebiasaan memacu kendaraan dengan kecepatan tinggi tidak men- jadikan seseorang bisa mengatasi kodratnya sebagai makhluk pejalan kaki. Bahkan, seorang pembalap F1 sekelas Michael Schumacher pun tidak bisa menghindar saat mobil F1 yang berada di depannya berhenti atau mengurangi kecepatan secara tiba-tiba. Oleh karena itu, saat memacu mobil dengan kecepatan tinggi (di atas 80 km/jam), seorang pengemudi harus memusatkan seluruh perhatiannya ke jalan. Memusatkan seluruh perhatian ke jalan, termasuk memperhatikan gerak-gerik kendaraan yang datang dari arah berlawanan, sulit dilakukan jika mobil dipacu dengan kecepatan tinggi. Hal ini disebabkan sudut pandang pengemudi menyempit seiring dengan meningkatnya kecepatan. Pada kecepatan sebesar 40 km/jam sudut pandang pengemudi 100°, 70 km/jam menjadi 75°, 100 km/jam menjadi 45°, dan pada kecepatan 130 km/jam menjadi 30°. Sayangnya, dalam kehidupan sehari-hari jarang ada kendaraan yang melaju dijalan dengan menjaga jarak aman. Pada umumnya, jarak antar-kendaraan 3 sampai 4 meter saja. Bahkan juga saat mobil dipacu di atas 80 km/jam. Selain itu, jarang pengemudi yang memperhatikan kondisi fisiknya. Meskipun mengantuk, lelah, atau mengonsumsi obat yang menyebabkan kantuk, mereka tetap memacu kendaraan dengan kecepatan tinggi. Itulah sebabnya, saat dijalan ada kendaraan yang mengerem mendadak, lansung terjadi tabrakan beruntun. Berdasarkan studi yang dilakukan diberbagai negara, diketahui bah- wa 80% dari kecelakaan di jalan raya karena kesalahan pengemudi (human error). Sisanya terjadi karena hal-hal lain seperti pengemudi kendaraan lain, ban pecah, rem blong, atau jalan jelek. Oleh karena itu, periksalah kendaraan Anda saat akan melakukan perjalanan jauh dan jagalah fisik Anda agar tetap dalam kondisi prima. (Dikutip seperlunya dari, Kompas, 20 Oktober 2006)
- 69. 61Gerak Lurus A. Pilihlah jawaban yang benar dengan menuliskan huruf a, b, c, d, atau e di buku tugas Anda! 1. Perhatikan gambar berikut! Jono menempuh lintasan ABC dan Jinni menempuh lintasan BDC. Jarak dan perpindahan Jono dan Jinni adalah …. a. Jono; 12 m dan 4 m, Jinni; 16 m dan 4 m b. Jono; 12 m dan 4 m, Jinni; 8 m dan 4 m c. Jono; 8 m dan 4 m, Jinni; 16 m dan 4 m d. Jono; 12 m dan 8 m, Jinni; 16 m dan 4 m e. Jono; 16 m dan 4 m, Jinni; 8 m dan 4 m 2. Perhatikan gambar berikut! Sebuah benda berpindah dari posisi A ke posisi C, melaluli lintasan A – B – C. Panjang perpindahan yang dilakukan benda tersebut adalah …. a. 10 m b. 10 m c. 10 m d. 20 m e. 20 m 3. Karena patah hati Andi memacu motornya lurus 150 km ke barat selama 3 jam, kemudian berbalik ke timur 50 km selama 2 jam. Kecepatan rata- rata Andi dalam perjalanan tersebut adalah …. a. 10 km/jam ke barat b. 10 km/jam ke timur c. 20 km/jam ke barat d. 20 km/jam ke timur e. 30 km/jam ke barat P e l a t i h a n D A C -5 -4 -3 -2 -1 0 1 2 3 54 6 A B C 10 m 10 m 60°
- 70. 62 Fisika SMA/MA Kelas X 4. Perhatikan gambar grafik dibawah ini! Grafik di atas merupakan grafik hubungan antara kecepatan (v) dan waktu (t) dari suatu gerak lurus. Bagian grafik yang menunjukkan gerak lurus beraturan adalah …. a. 1 d. 4 b. 2 e. 5 c. 3 5. Posisi suatu partikel yang bergerak sepanjang garis lurus dinyatakan dalam persamaan x = 2t2 , dengan x dalam m dan t dalam s serta 2 dalam m/s2 . Kecepatan sesaat pada waktu t = 2 s adalah …. (Olimpiade Fisika, Yohanes Surya) a. 5 m/s d. 8 m/s b. 6 m/s e. 9 m/s c. 7 m/s 6. Keluarga Sinta bepergian dengan menggunakan sebuah mobil. Sinta menyetir mobil menggantikan ayahnya setelah menempuh jarak 40 km dari rumahnya. Pada jarak 10 km dari tempat perggantian, Sinta bergerak dengan kecepatan 90 km/jam selama 15 menit. Posisi Sinta dan keluarganya dari rumah setelah 15 menit tersebut adalah …. a. 72 km dari rumah b. 72,5 km dari rumah c. 82 km dari rumah d. 82,5 km dari rumah e. 92 km dari rumah 7. Sebuah benda bergerak dengan kecepatan awal 20 m/s. Jika setelah 5 s kecepatannya menjadi 30 m/s, maka percepatan dan jarak yang ditempuh benda tersebut setelah 5 s adalah …. a. 2 m/s2 dan 100 m b. 3 m/s2 dan 100 m c. 2 m/s2 dan 125 m d. 3 m/s2 dan 125 m e. 2 m/s2 dan 150 m 1 2 3 4 5 v(m/s) t
- 71. 63Gerak Lurus 8. Sebuah kereta listrik berangkat dari stasiun A dengan memperoleh per- cepatan 1 m/s2 selama 6 s dan kemudian percepatannya dinaikkan menjadi 2 m/s2 sampai mencapai kecepatan 20 m/s. Kemudian, kereta tersebut bergerak dengan kecepatan tetap. Menjelang sampai di stasiun B, kereta tersebut diperlambat dan berhenti setelah 5 detik. Jika waktu yang diperlukan untuk sampai di stasiun B 50 s, maka jarak kedua stasiun tersebut adalah …. a. 999 m d. 789 m b. 899 m e. 799 m c. 779 m 9. Perhatikan gambar grafik di bawah ini! Jika luas daerah yang diarsir 48 m2 , maka percepatan benda dalam grafik tersebut adalah …. a. 1 m/s2 d. 4 m/s2 b. 2 m/s2 e. 5 m/s2 c. 3 m/s2 10. Grafik kecepatan terhadap waktu untuk benda yang dilempar ke atas dan kembali pada pelempar setelah mencapai ketinggian tertentu adalah …. a. d. b. e. c. v (m/s) t (s) t 16 8 0 v t v t v t v t v t
- 72. 64 Fisika SMA/MA Kelas X B. Kerjakan soal-soal berikut dengan benar! 1. David berlari menurut garis lurus dengan kecepatan rata-rata 5 m/s selama 4 menit. Kemudian ia melanjutkan dengan kecepatan rata-rata 4 m/s selama 2 menit dalam arah yang sama. Hitunglah kecepatan rata-rata dan total perpindahan David! 2. Anda diminta oleh menteri perhubungan merancang sebuah bandara untuk pesawat-pesawat kecil. Pesawat-pesawat yang akan digunakan di bandara tersebut harus mencapai kecepatan 27,8 ms-1 atau 100 km/jam sebelum lepas landas. Berapa panjang minimum landasan yang harus dibuat agar pesawat dapat lepas landas? 3. Alvin mengendarai sepeda motor dengan kecepatan 90 km/jam. Di tengah perjalanan, tiba-tiba ia melihat seorang nenek menyeberang jalan pada jarak 125 m di mukanya. Berapa perlambatan minimum yang harus dilakukan Alvin agar dia tidak menabrak nenek tersebut? 4. Cindy dan Putri mengendarai sepeda motor yang bergerak saling ber- hadapan dengan laju yang sama, 30 km/jam. Ketika jarak mereka 60 km, seekor lebah terbang dari ujung roda depan sepeda motor Cindy ke ujung roda depan sepeda motor Putri. Saat menyentuh ujung roda depan sepeda motor Putri, lebah kembali lagi ke ujung roda depan sepeda motor Cindy, demikian seterusnya. Jika selama gerakan tersebut lebah memiliki kelajuan 50 km/jam, maka hitunglah jarak yang ditempuh lebah sampai ia terjepit di antara roda depan sepeda motor Cindy dan Putri! 5. Wendy, seorang penerjun payung. Ia melompat dari sebuah pesawat dan baru mengembangkan parasutnya setelah jatuh bebas sejauh 60 m. Karena mengembangnya parasut tersebut, Wendy mendapatkan perlambatan sebesar 2 m/s2 . Jika saat tiba di tanah kecepatan Wendy tepat nol, maka tentukan lama parasut tersebut di udara dan ketinggian Wendy saat melompat!
- 73. 65Gerak Melingkar Perhatikan gambar di atas! Saat pengendara “sepeda maut” mengitari gulungan lintasan maut, tekanan lintasan terhadap ban sepedanya menyebabkan timbulnya gaya sentripetal yang menariknya mengelilingi lintasan yang melingkar tersebut. Saat berada di bagian atas lintasan, gravitasi bumi menariknya ke bawah. Namun, kecenderungannya untuk bergerak mengikuti garis lurus (gaya sentrifugal) membuat sepedanya tertekan keluar menimpa lintasan. Sumber: Jendela Iptek, Gaya dan Gerak Tujuan Pembelajaran Gerak Melingkar Bab III • Anda dapat menganalisis besaran fisika pada gerak melingkar dengan laju konstan. K ata Kunci • Frekuensi • Kecepatan Sudut Rata-Rata • Vektor Kecepatan Sudut • Gerak Lurus • Kecepatan Sudut Sesaat • Gerak Melingkar Beraturan •GerakMelingkar • PercepatanSudutRata-Rata •GMBB • Kecepatan Linear • Percepatan Tangensial • Percepatan Sentripetal
Gallery Buku Fisika Kelas 10
Buku Peminatan Siswa Fisika Kelas 10 Intan Pariwara
Kajian Fisika Sma 1 Buku Siswa
Download Buku Fisika Sma Kelas 10 Bse Fisika Sma Thinks
Buku Fisika Berbasis Pendidikan Karakter Bangsa Untuk Sma Ma Kelas X Ktsp
Jual Produk Sma Buku Fisika Buku Murah Dan Terlengkap
76 Gambar Buku Fisika Kelas 10 Kurikulum 2013 Paling Hist
E Book Aktif Dan Kreatif Belajar Fisika Kls X Peminatan
Buku Fisika Kelas 10 Sma Buku Sekolah Elektronik
Materi Soal Fisika Sma Kelas 10
Buku Ringkasan Materi Dan Latihan Brilian Fisika X
Buku Fisika Untuk Sma Kelas X Kelompok Peminatan Erlangga Wr
Mandiri Fisika Untuk Sma Ma Kelas X Ktsp 2006 Jilid 1
Buku Sekolah Fisika Teknologi Dan Rekayasa Smk Mak Kelas X Kurikulum 2013 Revisi
Jual Buku Fisika Smk Kelas X 10 Teknologi Rekayasa K13n Erlangga Kota Semarang Toko Buku Cemerlang Tokopedia
Buku Pelajaran Kurikulum 2013 Buku Peminatan Fisika Kelas X
Peminatan Mipa Fisika Buku Siswa Kls X
Buku Fisika Untuk Siswa Sma Ma Kelas X Peminatan Kurikulum 2013 Edisi Revisi 2016
76 Gambar Buku Fisika Kelas 10 Kurikulum 2013 Paling Hist
Kelas 10 Buku Teks Peminatan Buku Pendidikan Menu
Buku Fisika Kelas 10 Masmedia Books Stationery Textbooks
Fisika Untuk Sma Ma Kelas 10 Prog Peminatan Toko Buku
Buku Pendalaman Materi Kilat Fisika Sma Ma Kelas 10 11 12
Buku Kompetensi Fisika Kelas 11 Sma Buku Sekolah Elektronik
Buku Fisika Sma Terpadu Kelas X
Fisika Sma Ma Kelas X Peminatan
0 Response to "Buku Fisika Kelas 10"
Post a Comment