Rumus Akar Persamaan Kuadrat
Tutorial Menentukan Akar Persamaan Kuadrat Dengan Cara Rumus
Akar-Akar Persamaan Kuadrat
Definisi Persamaan Kuadrat Persamaan kuadrat adalah persamaan dengan pangkat peubah tertingginya dua. Bentuk umum persamaan kuadrat ax2 + bx + c = 0, a tidak sama dengan 0. Akar persamaan kuadrat ax2 + bx + c = 0 adalah nilai x yang memenuhi persamaan kuadrat tersebut. Terdapat tiga cara untuk menentukan akar persamaan kuadrat. Memfaktorkan Faktorisasi atau pemfaktoran adalah menyatakan penjumlahan suku-suku bentuk aljabar menjadi bentuk perkalian faktor-faktor. Memfaktorkan persamaan kuadrat adalah membuat persamaan kuadrat tersebut menjadi perkalian dua persamaan linear. Contohnya adalah sebagai berikut. Dua contoh persamaan kuadrat di atas difaktorkan secara langsung. Perhatikan bahwa ada dua bentuk persamaan kuadrat pada masing-masing contoh. Kadang kita menemukan berbagai bentuk persamaan kuadrat. Untuk masing-masing bentuk persamaan kuadrat tersebut, terdapat cara yang berbeda dalam memfaktorkannya. Agar lebih memahami mengenai faktorisasi, mari kita bahas satu per satu metode faktorisasi berikut ini. Faktorisasi dengan Hukum Distributif Faktorisasi dengan hukum distributif digunakan ketika pada masing-masing suku bentuk aljabar tedapat faktor (pengali) yang sama. Hukum distributif ini pernah dipelajari ketika belajar operasi perkalian bentuk aljabar. Perhatikan kembali hukum distributif berikut ini. a(b + c) = ab + ac Karena bentuk di atas dipisahkan oleh operasi sama dengan "=" maka kedua ruas tersebut berlaku bolak-balik. Artinya, jika kita menemukan faktor (pengali) yang sama di setiap suku pada bentuk aljabar, bisa kita faktorkan dengan cara hukum distributif. Perhatikan contoh berikut ini.
4a + 8 Kedua suku tersebut memiliki pengali yang sama, yaitu 4. Suku pertama dikalikan a dan suku kedua dikalikan 2. Sehingga bentuk aljabar tersebut bisa disederhanakan menjadi 4a + 4.2 Melalui hukum distributif, bentuk tersebut dapat diubah menjadi
4a + 4.2 = 4(a + 2)
9p3 + 18p5 Masing-masing suku pada bentuk aljabar di atas memiliki pengali yang sama, yaitu 9p3, sehingga dapat difaktorkan dengan hukum distributif sebagai berikut. 9p3 + 18p5 = 9p3 + 2.9p3p2 = 9p3(1 + 2p2)
p(p + q) - 2q(p + q) Perhatikan bahwa setiap suku pada bentuk aljabar tersebut mempunyai pengali yang sama, yaitu (p+q), sehingga dengan menggunakan hukum distributif, diperoleh faktor sebagai berikut.
p(p + q) - 2q(p + q) = (p + q)(p - 2q)
Persamaan kuadrat yang difaktorkan dengan menggunakan hukum distributif biasanya adalah persamaan kuadrat tanpa konstanta. Contoh persamaan kuadrat yang difaktorkan dengan hukum distributif adalah sebagai berikut. x2-4x=x(x-4) 3x2+18x=3x(x+6)
Faktorisasi Selisih Dua Kuadrat Sebelum membahas bagaimana memfaktorkan bentuk selisih dua kuadrat, kita lihat dulu yang satu ini. Dengan menggunakan hukum distributif, coba kita uraikan bentuk perkalian (x+y)(x-y).
(x+y)(x-y)=x2-xy+xy-y2=x2-y2
Bentuk terakhir itulah yang disebut dengan selisih dua kuadrat. Faktorisasi selisih dua kuadrat adalah membalik dari bentuk selisih dua kuadrat menjadi perkalian faktor-faktornya. Berarti, bentuk umumnya adalah sebagai berikut.x2-y2=(x+y)(x-y)
Hal yang perlu diperhatikan adalah bahwa selisih dua kuadrat cuma terdiri dari dua suku dan dioperasikan dengan operasi pengurangan. Kayaknya untuk bentuk yang ini cukup mudah memfaktorkannya. Kita langsung saja ke contoh soal dan pembahasannya.
Faktorisasi Bentuk Umum Persamaan Kuadrat Bentuk umum persamaan kuadrat kadang bisa difaktorkan dengan mudah, kadang harus difaktorkan dengan metode tertentu. Berikut ini jenis-jenis faktorisasi bentuk umum persamaan kuadrat beserta cara memfaktorkannya.
Bentuk ax2 + bx + c (Untuk a = 1) Cara pemfaktoran untuk persamaan kuadrat di atas adalah sebagai berikut.
x2 + bx + c = x2 + (m + n)x + mn
dengan mn = c dan m + n = b Faktornya menjadix2 + bx + c = (x + m)(x + n)
Contohnya sudah dikemukakan di awal, yaitu sebagai berikut.x2 + 2x - 3 = 0
(x - 1)(x + 3) = 0Bentuk ax2 + bx + c (Untuk a tidak sama dengan 1) Berikut cara memfaktorkannya:
ax2 + bx + c = ax2 + px + qx + c
dengan pq = ac dan p + q = b contoh:3x2 + 14x + 15
= 3x2 + 5x + 9x + 15 = x(3x + 5) + 3(3x + 5)= (x + 3)(3x + 5)
Cara lain memfaktorkan persamaan kuadrat ax2 + bx + c (a tidak sama dengan 1) ax2 + bx + c = 1/a(ax + m)(ax + n) dengan mn = ac dan m + n = b contoh:
3x2 + 14x + 15
= 1/3(3x + 9)(3x + 5) = 1/3[3](x + 3)(3x + 5)= (x + 3)(3x + 5)
Bentuk x2+2xy+y2 Bentuk ini disebut bentuk kuadrat sempurna. Perhatikan ciri-cirinya. Di sana ada suku dengan bentuk kuadrat yaitu x2 dan y2 dan suku 2xy yang sama dengan 2 dikalikan masing-masing akar x2 dan y2. Cara memfaktorkannya cukup mudah, yaitu sebagai berikut. x2+2xy+y2=(x+y)2 Cukup kita menuliskan kuadrat dari penjumlahan akar bentuk kuadratnya. Contoh:
x2+6x+9=x2+2(x)(3)+32=(x+3)2
Itulah metode-metode faktorisasi untuk dapat menyelesaikan persamaan kuadrat. Tidak perlu bingung memilih mana yang harus digunakan ketika memfaktorkan. Saya membahas beberapa metode faktorisasi di atas untuk memudahkan saja. Pada kasus tertentu kita tidak perlu susah-susah menfaktorkan. Intinya yang harus dipahami betul dalam memfaktorkan persamaan kuadrat ini adalah faktorisasi persamaan kuadrat dengan bentuk Bentuk ax2+bx+c untuk a=1 atau a tidak sama denga 1. Jika paham cara memfaktorkan bentuk tersebut, bentuk lainnya bisa dipahami dengan mudah.
Setelah mengetahui faktornya, dengan mudah kita bisa mencari akarnya. Persamaan kuadrat jika sudah dalam bentuk faktor-faktor, akarnya dapat dicari dengan cara membuat masing-masing faktor sama dengan nol, setelah itu cari nilai dari peubah x. Contoh mencari akar persamaan kuadrat dengan cara memfaktorkannya terlebih dahulu adalah sebagai berikut.
- x2 + 2x - 3 = 0 (x - 1)(x + 3) = 0 x = 1 atau x = -3
- 2x2 + 10x + 12 = 0 (2x + 4)(x + 3) = 0 x = -2 atau x = -3
- x2 - 9 = 0 (x - 3)(x + 3) = 0 x = 3 atau x = -3
- x2 - 10x + 25 = 0 (x - 5)2 = 0 x = 5
Melengkapkan Kuadrat Sempurna Teknik melengkapkan kuadrat sempurna adalah teknik untuk mendapatkan bentuk kuadrat dari sebuah bilangan. Langkah terakhir dari teknik kuadrat sempurna adalah mendapatkan bentuk
(x - a)2 = p.
Perhatikan contoh berikut tentang bagaimana mendapatkan akar persamaan kuadrat dengan melengkapkan kuadrat sempurna.Menggunakan Rumus Rumus akar persamaan kuadrat sebenarnya didapatkan dari bentuk umum persamaan kuadrat dan diturunkan menggunakan cara melengkapkan kuadrat sempurna. Berikut ini adalah rumus untuk mencari akar persamaan kuadrat secara langsung.
Penggunaan rumus dalam menyelesaikan akar persamaan kuadrat adalah cara yang paling mudah. Kita tinggal substitusi koefisien x2 ke a, koefisien x ke b, dan konstanta ke c. Perhatikan contoh di bawah ini.
Bonus: Pembuktian rumus untuk mencari akar persamaan kuadrat Persamaan kuadrat adalah salah satu dasar dari matematika yang perlu dipahami karena sangat bermanfaat dalam beberapa penyelesaian soal. Dalam penyelesaian akhir persamaan kuadrat diperoleh akar (akar-akar). Untuk memperoleh akar (akar-akar) persamaan kuadrat, ada tiga cara yang dapat digunakan, yaitu dengan memfaktorkan, dengan menggunakan metode kuadrat sempurna, dan dengan menggunakan rumus. Dua cara yang terakhir yaitu metode kuadrat sempurna dan rumus mempunyai hubungan yang erat. Rumus akar persamaan kuadrat diperoleh dari metode kuadrat sempurna terhadap bentuk umum persamaan kuadrat.
Dengan menggunakan rumus, akar (akar-akar) persamaan kuadrat ax2+bx+c=0 adalah sebagai berikut.
Sekarang kita buktikan rumus tersebut dengan menggunakan metode melengkapkan kuadrat sempurna. Tujuan akhirnya kita mendapatkan bentuk (x+p)2=q, sehingga untuk mendapatkan nilai x menjadi lebih mudah.
Sebuah persamaan kuadrat yang tidak memiliki konstanta bisa diubah menjadi sebuah persamaan kuadrat sempurna [(x+p)2] dengan cara menambahkan kuadrat dari setengah koefisien x persamaan kuadrat tersebut. Simak pembahasan berikutnya.
Kita tahu bahwa x2+2px+p2=(x+p)2 Apabila p = 1/2 m, persamaan di atas menjadi x2+mx+(1/2 m)2=(x+1/2 m)2 Dapat disimpulkan bahwa untuk mendapatkan bentuk kuadrat sempurna dari x2+mx adalah dengan menambahkan (1/2 m)2, sehingga diperoleh bentuk kuadrat sempurna (x+1/2 m)2.
Simak pembuktian berikut ini. TERBUKTI
Oleh OpanDibuat 08/12/2011
Seorang guru matematika yang hobi menulis tiga bahasa, yaitu bahasa indonesia, matematika, dan php. Dari ketiganya terwujudlah website ini sebagai sarana berbagi pengetahuan yang dimiliki.
Demi menghargai hak kekayaan intelektual, mohon untuk tidak menyalin sebagian atau seluruh halaman web ini dengan cara apa pun untuk ditampilkan di halaman web lain atau diklaim sebagai karya milik Anda. Tindakan tersebut hanya akan merugikan diri Anda sendiri. Jika membutuhkan halaman ini dengan tujuan untuk digunakan sendiri, silakan unduh atau cetak secara langsung.
Gallery Rumus Akar Persamaan Kuadrat
Rumus Persamaan Kuadrat Rumushitung Com
Rumus Jumlah Dan Hasil Kali Persamaan Kuadrat
Persamaan Kuadrat Rumus Abc Matematika Ku Persamaan
Catatan Harian Matematika Jumlah Selisih Dan Hasil Kali
Rumus Persamaan Kuadrat Matematika Lengkap
Rumus Persamaan Kuadrat Penyelesaian Akar Dan Contoh Soal
Bentuk Umum Persamaan Kuadrat Seperti Ini
Menentukan Akar Akar Persamaan Kuadrat Guntursuhandoyo
Rumus Abc Pengertian Soal Pembahasan Dosenpintar Com
Persamaan Kuadrat Rumus Abc Akar Akar Pk Baru Contoh Soal
Andkuadrat For Android Apk Download
Rumus Persamaan Kuadrat Lengkap
Rumus Jumlah Dan Hasil Kali Akar Akar Persamaan Kuadrat
Contoh Soal H Contoh Soal Akar Kuadrat 2
Persamaan Kuadrat Pengertian Rumus Contoh Soal Pembahasan
Cara Menentukan Persamaan Kuadrat Baru Idschool
Tutorial Cara Menentukan Akar Persamaan Kuadrat Dengan Cara Melengkapkan Kuadrat Sempurna Bag 2
Contoh Soal Rumus Abc Dan Pembahasannya Soalfismat Com
Yuk Persiapkan Diri Menghadapi Persamaan Kuadrat Untuk
Cara Mencari Akar Akar Persamaan Kuadrat Pemfaktoran
Tutorial Bagaimana Menggunakan Rumus Operasi Akar Persamaan
Akar Akar Persamaan Kuadrat X1 Dan X2 Archives Dosenmipa Com
Soal Matematika Akar Kuadrat Contoh Soal
Pelajaran Soal Rumus Menyusun Persamaan Kuadrat Baru
0 Response to "Rumus Akar Persamaan Kuadrat"
Post a Comment