Rumus Persamaan Garis Lurus
Rumus Persamaan Garis Singgung Lingkaran Dan Contoh Soalnya
Rumus Gradien Melalui Titik Pusat dan Dua Titik Beserta Contoh Soal
Rumus Gradien adalah rumus yang di pakai untuk mengukur pada kemiringan suatu garis, Berikut ini akan kami jelaskan lengkap mengenai rumus gradien yang meliputi pengertian, rumus dan contoh soalnya
Gradien disebut juga sebagai koefisien arah pada garis lurus dan dilambangkan huruf m.. Untuk lebih jelasnya simak pembahasan di bawah ini
Gradien adalah nilai kemiringan pada suatu garis yang membandingkan antara komponen Y dengan komponen X
Rumus Mencari Gradien
Terdapat beberapa kondisi ataupun keadaan untuk mencari gradien garis, perhatika pembahasa berikut ini
1. Gradien Garis Melalui Titik Pusat (0,0) dan Titik (x, y)
Diketahui bahwa persamaan garis yang melalui titik pusat (0,0) dan titik (x, y) adalah
y = mx.
Perhatikan contoh berikut ini.
Mari kita bahas dengan soal dan pembahasannya
Tentukanlah gradien persamaan garis melalui titik pusat dan titik (3, 5)!
Penyelesaian:
Persamaan garis melalui titik (0, 0) dan (3, 5) adalah y = (5/3)x. Hingga gradiennya yaitu 5/3.
Dari contoh soal tersebut bisa kita simpulkan bahwa gradien dari persaman garis y = mx adalah m.
Kesimpulan perbandingan antara komponen y dengan komponen x pada tiap ruas garis adalah sama. Nilai perbandingan itu dinamakan gradien.
Maka, persamaan garis y = mx mempunyai gradien m dengan m = y/x.
2. Gradien Garis Melalui Dua Buah Titik (x1, y1) dan (x2, y2)
Tidak selalu bahwa sebuah garis tersebut melewati titik pusat (0,0). Jika suatu garis tidak melalui titik pusat (0,0), dapatkah kamu menentukan gradiennya?
Mari kita bahas contoh soal dan pembahasannya
Tentukanlah gradien persamaan garis melalui titik (6, 2) dan titik (3, 5)!
Penyelesaian:
x1 = 6; y1 = 2; x2 = 3; y2 = 5
Jadi, gradien persamaan garisnya adalah -1.
Kesimpulan perbandingan komponen x dan komponen y untuk setiap ruas garis yaitu sama, yaitu 1. Bilangan 1 ini adalah gradien dari persamaan garis y = x + 2.
Maka, persaman garis y = mx, c ≠ 0 mempunyai gradien m dengan;
3. Gradien Garis Sejajar Sumbu-x dan Sumbu-y
Untuk mencari gradien garis yang sejajar sumbu-x dan gradien garis yang sejajar sumbu-y bisa memakai rumus berikut
Perhatikan gambar berikut ini
Garis o sejajar dengan sumbu-x dan garis n sejajar dengan sumbu-y.
Pada gambar tersebut terlihat jelas bahwa garis o melalui titik (-4, 2) dan (5, 2). Gradien garis o yaitu
Maka, gradien garis sejajar sumbu-x adalah 0.
Perhatikan garis n di bawah ini!
Garis n melalui titik (4, 8) dan (4, -5). Gradien garis n yaitu m = (–5 – 8):(4 – 4) = 13/0 = (tidak didefinisikan).
Maka, gradien garis sejajar sumbu-y tidak didefinisikan.
4. Gradien Garis Yang Saling Sejajar
Gradien garis sejajar sumbu-x yaitu 0. Bagaimana dengan gradien dengan dua buah garis yang sejajar seperti terlihat pada gambar berikut?
Perhatikan gambar tersebut, lalu kemudian lakukan kegiatan di bawah ini guna mencari gradien garis yang sejajar. Apa yang bisa di simpulkan berdasarkan kegiatan itu ?
Carilah gradien ruas garis AB, PQ, MN, dan RS pada gambar tersebut dengan melengkapi titik-titik berikut ini!
• Titik A (1, 4) ; B (6, 11) Gradien AB = (11 – 4):(6 – 1) = 7/5
• Titik P (2,2) ; Q (7,9) Gradien PQ = (9 – 2):(7 – 2) = 7/5
• Titik M (6,3); N (11,10) Gradien MN = (10 – 3):(11–6) = 7/5
• Titik R (1,4); S (6,11) Gradien RS = (11 – 7):(6 – 1) = 7/5
Maka, gradien garis AB = PQ = MN = RS = 7/5 .
5. Gradien Garis Saling Tegak Lurus
Selain kedudukan 2 buah garis sejajar, ada juga kedudukan 2 garis yang saling tegak lurus. Bagaimana gradien garis yang tegak lurus? Apakah gradiennya sama?
Gradien 2 buah garis yang tegak lurus jika dikalikan hasilnya sama dengan –1.
Maka, jika l adalah sebuah garis tegak lurus dengan garis p maka berlaku ml × mp = –1.
Contoh Soal
Untuk memudahkan dala pemahaman, sima beberapa contoh soal dibawah ini
Soal No.1 Tentukanlah gradien dari persamaan garis berikut ini:
a) y = 3x + 2 b) 10x − 6y + 3 = 0
Jawab :
a) y = 3x + 2 Pola persamaan garis pada soal a adalah y = mx + C Hingga mudah menemukan gradien garisnya m = 3
b) 18x − 6y + 24 = 0 Ubah persamaan b jadi pola y = mx + c
18x − 6y + 24 = 0 18x + 24 = 6y 6y = 18x + 24 bagi dengan 6 y = 3x + 4
hingga m = 3
Gallery Rumus Persamaan Garis Lurus
Garis Lurus Dan Kemiringannya Gradien Belajar
Menghitung Persamaan Garis Singgung Lingkaran Dengan Mudah
Rumus Persamaan Garis Lurus Beserta Teladan Soal Pondok Soal
Soal Dan Pembahasan Matematika Latihan 4 2 Kelas 8 Bab
1 6 Persamaan Garis Lurus Kemiringan Gradien Garis
Cara Menentukan Persamaan Garis Lurus Idschool
Calameo Soal Matematika Tugas Kelas 8
Pengertian Dan Rumus Persamaan Garis Lurus Serta Contoh Soal
Persamaan Garis Melalui Sebuah Titik Dan Sejajar Dengan Garis
Mengenal Aplikasi Persamaan Garis Lurus Dalam Kehidupan
Contoh Soal Gradien Persamaan Garis Singgung Dan
Pengertian Dan Rumus Persamaan Garis Lurus Serta Contoh Soal
Persamaan Garis Lurus Gradien Materi Rumus Contoh Soal
Persamaan Garis Lurus Pengertian Rumus Grafik Contoh
Persamaan Garis Lurus Melalui 2 Titik Idschool
Persamaan Garis Lurus Gradien Materi Rumus Contoh Soal
Matematika Kita Rumus Persamaan Garis Lurus
Persamaan Garis Lurus Pengertian Rumus Dan Contoh Soal
Pengertian Dan Rumus Persamaan Garis Lurus Serta Contoh Soal
Kalkulator Online Persamaan Garis Lurus Antara Dua Titik
Un 2010 Sma Ipa Kuadrat Menentukan Kedudukan Garis Lurus
Gradien Dan Menyusun Persamaan Garis Lurus Pondok Soal
Ppt Menggambar Grafik Persamaan Garis Lurus
0 Response to "Rumus Persamaan Garis Lurus"
Post a Comment