Rumus Regresi Linier Berganda
4 Analisis Regresi Linier Berganda Dengan Matriks
Pengertian Analisis Regresi Korelasi Dan Cara Hitung
Analisis regresi mempelajari bentuk hubungan antara satu atau lebih peubah/variabel bebas (X) dengan satu peubah tak bebas (Y). Dalam penelitian peubah bebas ( X) biasanya peubah yang ditentukan oleh peneliti secara bebas misalnya dosis obat, lama penyimpanan, kadar zat pengawet, umur ternak dan sebagainya.
Disamping itu peubah bebas bisa juga berupa peubah tak bebasnya, misalnya dalam pengukuran panjang badan dan berat badan sapi, karena panjang badan lebih mudah diukur maka panjang badan dimasukkan kedalam peubah bebas (X), sedangkan berat badan dimasukkan peubah tak bebas (Y).
Sedangkan peubah tak bebas (Y) dalam penelitian berupa respon yang diukur akibat perlakuan/peubah bebas (X). misalnya jumlah sel darah merah akibat pengobatan dengan dosis tertentu, jumlah mikroba daging setelah disimpan beberapa hari, berat ayam pada umur tertentu dan sebagainya.
Tujuan Regresi Linear
Regresi linier adalah salah satu dari jenis analisis peramalan atau prediksi yang sering digunakan pada data berskala kuantitatif (interval atau rasio).
Tujuan dilakukannya regresi linear antara lain adalah: Apakah seperangkat atau sekumpulan variabel prediktor signifikan dalam memprediksi variabel respon?
Variabel predictor manakah yang signifikan dalam menjelaskan variable respon? Hal ini ditunjukkan dengan koefisien estimasi regresi. Koefisien estimasi inilah yang nantinya akan membentuk persamaan regresi.
Untuk mempelajari cara melakukan analisis regresi linear, silahkan baca artikel kami antara lain: Regresi Linear Sederhana dengan SPSS Regresi Linear Berganda dengan Minitab Regresi Linear Berganda dengan STATA Analisis Regresi dalam Excel
Bentuk Hubungan Variabel Bebas dan Terikat
Bentuk hubungan antara peubah bebas (X) dengan peubah tak bebas (Y) bisa dalam bentuk polinom derajat satu (linear) polinom derajat dua (kuadratik). Polinom derajat tiga (Kubik) dan seterusnya. Disamping itu bisa juga dalam bentuk lain misalnya eksponensial, logaritma, sigmoid dan sebagainya. Bentuk-bentuk ini dalam analisis regresi-korelasi biasanya dilakukan transformasi supaya menjadi bentuk polinom.
Persamaan Regresi
Dalam bentuk yang paling sederhana yaitu satu peubah bebas (X) dengan satu peubah tak bebas (Y) mempunyai persamaan:
Y =a +bx
Disini a disebut intersep dan b adalah koefisien arah atau koefisien beta.
Dalam pengertian fungsi persamaan garis Y + a + bx hanya ada satu yang dapat dibentuk dari dua buah titik dengan koordinat yang berbeda yaitu ( X1, Y1) dan X2,Y2). Hal ini berarti kita bisa membuat banyak sekali persamaan garis dalam bentuk lain melalui dua buat titik yang berbeda koordinatnya/tidak berimpit.
Persamaan garis melalui dua buah titik dirumuskan sebagai berikut:
Contoh Persamaan Regresi
Sebagai contoh misalnya titik A (1,3) dan titik B ($,9) maka persamaan garis linear yang dapat dibuat adalah:
Dalam bentuk matrik bisa kita buat persaman sebagai berikut:
Jadi a=1 dan b=2 sehingga persamaannya Y=1 +2X
Jika jumlah data sebanyak n maka persamaannya sebagai berikut:
Disini βo adalah penduga a, β1 adlah penduga b dan εi merupakan besarnya simpangan persamaan garis penduga. Semakin kecil nilai εi persamaan regresi yang diperoleh akan semakin baik.
Penulisan pengamatan
Jadi kita dapat menuliskan pengamatan kita menjadi:
Dengan notasi matriks dapat ditulis sebagai berikut:
Jadi kita peroleh matrik Y,X,β dan ε dengan dimensi sebagai berikut :
Jika diasumsikan E(ε) = 0 maka E(Y) = Xβ
Bila modelnya benar β merupakan penduga terbaik yaitu dengan jalan melakukan penggandaan awal dengan X’ sehingga diperoleh persamaan normal sebagai berikut:
Jadi β=(X’X)-1X’Y
Disini(X’X)-1 adalah kebalikan (inverse) dari matrik X’X
Contoh Perhitungan Regresi
Seorang peneliti ingin mengetahui bentuk hubungan antara jumlah cacing jenis tertentu dengan jumlah telurnya pada usus ayam buras. Untuk tujuan tersebut diperiksa 20 ekor ayam dan ditemukan sebagai berikut:
Tabel 1 jumlah cacing dan jumlah telurnya pada usus ayam buras.
Dari data diatas kita bisa menghitung:
Bila kita duga bentuk hubungan antara jumlah cacing (X) dan jumlah telurnya (Y) adalah:
Jadi Ŷ=-2,442 + 4,103 Xi,
Persamaan Garis regresi Banyak Jenisnya
Persamaan garis regresi Yi =-2,442 + 4,103 Xi bukanlah satu-satunya garis penduga untuk menyatakan hubungan antara jumlah cacing dengan jumlah telurnya. Sudah barang tentu masih banyak lagi bentuk persamaan penduga yang dapat dibuat misalnya dalam bentuk persamaan Yi=βo+β1Xi+β2Xi2,Yi=βoXiβ1(dalam bentuk linear LnYi=Ln βo+βiLnXi) dan masih banyak lagi bentuk yang lainnya.
Untuk menyatakan apakah garis yang diperoleh cukup baik untuk menggambarkan hubungan antara peubah bebas (X) dengan peubah tak bebas (Y) dapat dilakukan pengujian bentuk model yang digunakan dan keeratan hubungannya (korelasi) untuk menyatakan ketepatan dan ketelitian persamaan garis regresi yang diperoleh.
Demikianlah penjelsan singkat kami tentang Analisis Regresi Linear. Agar anda memahami artikel ini, pelajari juga tentang Uji F dan Uji T: “Uji F dan Uji T“
Pelajari juga: Interprestasi Regresi Linear Berganda dengan Minitab dan regresi linear berganda.
By Anwar Hidayat
Gallery Rumus Regresi Linier Berganda
Uji Analisis Regresi Linear Ganda Dengan Spss Konsistensi
Pengertian Dan Contoh Soal Regresi Linier Berganda Statmat Id
Laporan Praktikum Analisis Regresi Terapan Modul Iii Regresi
Analisis Regresi Linier Berganda Menurut Para Ahli Spss
Ppt Model Regresi Linier Ganda Powerpoint Presentation
Pengertian Dan Contoh Soal Regresi Linier Berganda Statmat Id
Bab Viii Regresi Linear Berganda Dan Regresi Trend Non
Pengertian Dan Contoh Kasus Uji Regresi Linear Sederhana Dan
Jam Statistic Contoh Penghitungan Manual Analisis Regresi
Analisis Regresi Linier Sederhana Berganda Alief Workshop
Regresi Linier Berganda Multiple Linear Regression Ppt
Partial Least Square Pls Pengertian Fungsi Tujuan Cara
Analisis Regresi Linear Berganda Dengan Spss Metode Enter Vs
Pengertian Dan Contoh Soal Regresi Linier Sederhana Statmat Id
Cara Melakukan Analisis Regresi Multiples Berganda Dengan
Panduan Lengkap Uji Analisis Regresi Linear Sederhana Dengan
Uji Regresi Linier Berganda Dengan Menggunakan Spss Spss
Pdf Model Regresi Ridge Untuk Mengatasi Model Regresi
Regresi Linier Berganda Ppt Download
Persamaan Regresi Linier Berganda Docx 1 Persamaan Regresi
Analisis Regresi Linear Berganda Dengan Software R
Regresi Korelasi Linier 06 A Bx Y Peubah Takbebas X
Contoh Soal Regresi Linier Berganda 3 Variabel Bebas
Pengertian Dan Contoh Kasus Uji Regresi Linear Sederhana Dan
Bab 2 Tinjauan Teoritis Penjelasan Tentang Pola Hubungan
Analisis Regresi Linier Berganda Docx
Pdf Analisis Regresi Linear Berganda Moeldie Anto
0 Response to "Rumus Regresi Linier Berganda"
Post a Comment