Rumus Deret Aritmatika Dan Geometri



Rumus Barisan Dan Deret Aritmatika Dan Geometri Serta

Barisan Bilangan Aritmatika Dan Geometri

Barisan Bilangan  | Barisan bilangan merupakan salah satu bentuk cabang ilmu matematika yang merupakan bentuk materi  kelanjutan dari pola bilangan yang telah kita pelajari pada pembahasan sebelumnya . Barisan bilangan terdiri atas barisan aritmatika dan barisan geometri . Sebelum mempelajari secara rinci atau secara mendalam , maka kita terlebih dahulu mempeljari pengertian daripada barisan bilangan .

A. Pengertian Barisan Bilangan 

Barisan bilangan yaitu suatu daftar bilangan dari sebelah kiri ke kanan yang memiliki pola tertentu . Setiap aggota dari barisan bilangan di sebut dengan suku bilangan atau yang biasa dilambangkan dengan ” U “

Contoh :

3,4,5,6,7,8,9,10, . . . .

1,2,4,8,16,32 ,. . . .

B. Macam – macam Barisan Bilangan 

Barisan bilangan terbagi atas dua macam yaitu :

  1. Barisan bilangan Aritmatika
  2. Barisan bilangan Geometri

C. Definisi Barisan Bilangan Aritmatika Dan geometri 

  1. Barisan Bilangan Aritmatika ( penjumlahan ) 

Barisan bilangan aritmatika , yaitu barisan yang selisih antar suku yang berdekatan konstan atau barisan aritmatika disebut juga bilangan yang suku selanjutnya merupakan penjumlahan dari suku sebelumnya dengan rasio .

  • Bentuk barisan aritmatika 

a. Barisan aritmatika berderajat satu 

Secara umum, barisan aritmatika ditulis sebagai berikut :

a , a+b , a+2b , a+3b , a+4b , . . . .

U1 = a

U2 = a+2b

U3 = a+3b

U4 = a+ 4b

U10= a + 9b

Jadi , diperoleh Rumus barisan aritmatika sebagai berikut :

Un = a + ( n – 1 ) b 

b = Un -U(n-1)    atau     b= U(n+1) – Un 

Keterangan :

Un = suku ke n

n = banyaknya suku

a = suku pertama

b = rasio atau beda

Contoh Soal 

  1. 7 , 13 , 19 , 25 , 31 , 37 , . . .

Dari barisan bilangan di atas , tentuka :

a.) a

b.) b

Penyelesaian :

a.) a = suku pertama maka a = 7

b.) b = U2 – U1

         = 13 – 7

   b   = 6

2. Suatu arisan aritmatika suku ke-3 = 13 dan suku ke -6 = 28 . Tentukan :

a.) b

b.) a

c.) U8

d.) Tulislah enam suku pertama

Penyelesaian :

Diketahui : U3 = 13 dan U6= 28

Jawab :

a. ) U3 = 13 ->> a + 2b = 13

     U6 = 28 ->> a + 5b = 28   _

                                 -3b = – 15

                                     b = -15 / -3

                                     b = 5

b.) a + 2b = 13

     a + ( 2.5) = 13

     a + 10 = 13

      a    = 3

c.) Un = a + (n-1)b

     U8 = a + 7b

            = 3 + 7 . 5

            = 38

d.) 3 ,8 , 13 , 18 , 23 , 28 , . . .

b. Barisan aritmatika berderajat dua 

Barisan aritmatika berderajat dua , yaitu barisan aritmatika yang beda atau rasionya tidak tetap dan dan apabila beda tersebut dijadikan barisan maka akan terbentuk rasio yang tetap atau mengalami dua tahap baru diketahui beda atau rasio yang sama atau tetap .

Rumus umum barisan aritmatika berderajat dua :

Un = an2  + bn + c

Contoh :

1 , 3 , 6 , 10 , 15 , .. . .

Dari barisan aritmatika diatas , tentukan :

a.) Un

b.) U20

Penyelesaian :

Barisan di atas merupakan barisan aritmatika berderajat dua , karena dua tahap baru sama rasionya .

Misal Un =  an2  + bn + c

U1 = 1 –> a + b + c = 1   . . . . .(1)

U2 = 3 –> 4a + 2b + c = 3 . . . (2)

U3 = 6 –> 9a + 3b + c = 6 . . .(3)

  • Dari persamaan ( 2 ) dan (1 )

4a + 2b + c = 3

a + b + c = 1   _

3a + b = 2  . . . .( 4 )

  • Dari persamaan ( 3 ) dan ( 2 )

9a + 3b + c = 6

4a + 2b + c = 3  _

5a + b = 3  . .  . . ( 5 )

  • Dari persamaan ( 5 ) dan ( 4 )  untuk mencari nilai a

5a + b = 3

3a + b = 2  _

2a = 1

a = 1/2

  • mencari nilai b  , maka gunakanlah salah satu persamaan dan kali ini supaya mempermudah maka gunakan persamaan (4 )

3a + b = 2

3.1/2 + b =2

1 1/2 + b = 2

b = 1/2

  • mencari nilai c , maka gunakanlah persamaan ( 1 )

a + b + c = 1

1/2 + 1/2 + c = 1

1 + c = 1

c = 0

  • mencari Un , maka gunakanlah persamaan misal , yaitu

Un =  an2  + bn + c

       = 1/2n2  + 1/2n + 0

      = 1/2 n ( n + 1 )

jadi , jawaban nya adalah :

a.) Un =  1/2 n ( n + 1 )

b.) U20 = . . .?

Un =  1/2 n ( n + 1 )

U20 = 1/2 .20 ( 20 + 1 )

        =  10 ( 21 ) = 210

2. Barisan Bilangan Geometri  ( perkalian ) 

Barisan Bilangan Geometri , yaitu suatu barisan bilangan yang suku – sukunya terdiri dari atau terbentuk dari perkalian antara rasio dengan suku sebelumnya .

Bentuk umum dari suatu barisan geometri adalah :

a , a.r , a.r2 , a.r3 , a.r4 , a.r5  , . . . . .

U1 = a

U2 = a.r

U3 = a.r2

U4 =  a.r3

U10 = a.r9

Jadi , Rumus Barisan bilangan Geometri  secara umum adalah

Un = a.rn-1

Contoh soal :

  1. Sebuah barisan geometri , diketahui U3 = 18 dan U6 = 486 . Tentukan :

a.) a dan r

b.) U7

c.) Tulislah tujuh suku pertama

Penyelesaian :

Diketahui : U3 = 18     U6 = 486

Jawab :

a.)  U3 = 18 –> a.r2  = 18

     U6 = 486  –> a.r 5  = 486

U6 / U3 = 486 / 18   —->  a.r 5  / a.r2   =  486 / 18

                                    —–> r3     =  27

                                               r = 3

 a.r2  = 18

a. 3= 18

a = 2

b.) U7 = a.r 6

             = 2 .3 6   = 2 . 729 = 1458

c.) tujuh suku pertama yaitu :

2 , 6 , 18 , 54 , 162 , 486 , 1458 , . . .

Rumus Suku Tengah Barisan Aritmatika

Sebagai tambahan informasi saja bahwa didalam Barisan Aritmatika yang mempunyai jumlah yang ganjil, maka diantara Barisan Aritmatika itu terdapat suatu Suku Tengah Barisan Aritmatika. Kemudian didalam Cara Mencari Suku Tengah Barisan Aritmatika tersebut bisa kalian lihat rumusnya seperti dibawah ini :

U† = 1/2 (U1+Un)

Demikian , penjelasan mengenai barisan bilangan aritmatika dan geometri . Inti atau kunci dari pembahasan kali ini adalah bahwasannya pertama kali kita kenali bagaimana bntuk barisan aritmatika dan bagaimana bentuk barisan geometri . Setelah faham , maka selanjutnya baru pelajari bagaimana rumus – rumusnya dan apa saja komponen – komponen yang ada di dalamnya.

Sesungguhnya , untuk membedakan barisan aritmatika dan geometri sangatlah mudah yaitu apabila antara suku yang satu dengan yang lain merupakan hasil dari pembeda di tambah dengan suku sebelumnya maka bentuk ini disebut dengan barisan bilangan aritmatika. Sebaliknya , apabila suku pada suatu barisan bilangan merupakan hasil kali dari suku sebelumnya dengan pembeda maka bentuk ini disebut dengan barisan bilangan geometri.

Gallery Rumus Deret Aritmatika Dan Geometri

Doc Contoh Soal Barisan Dan Deret Aritmatika Geometri

Soal Deret Geometri Dan Pembahasannya Rumus Matematika

Contoh Soal Dan Pembahasan Tentang Barisan Dan Deret

Kumpulan Soal Pelajaran 2 Contoh Soal Aritmatika

Contoh Soal Aritmatika Dan Geometri Terupdate

Matematika Kelas 8 Barisan Dan Deret Aritmatika Rumus Un

Deret Geometri Rumus Contoh Soal Tak Terhingga Dan Limit

Rangkuman Contoh Soal Pembahasan Barisan Deret

Contoh Soal Aritmatika Dan Geometri Terupdate

Barisan Dan Deret Aritmatika Geometri Tak Hingga Rumus

Kumpulan Rumus Barisan Deret Aritmatika Geometri Contoh Soal

Kumpulan Rumus Aritmatika Dan Geometri Contoh Soal Lengkap

Rumus Deret Geometri Pengertian Dan Contoh Soalnya Lengkap

Barisan Dan Deret Aritmatika Rumus Contoh Dan

Pengertian Dan Rumus Deret Aritmatika Serta Contoh Soal

Rumus Aritmatika Dan Geometri Materisekolah Co Id

Pengertian Contoh Dan Rumus Barisan Geomateri Beserta

Rumus Barisan Aritmetika Dan Geometri Idschool

Barisan Dan Deret Aritmatika Geometri Contoh Soal

Contoh Soal Dan Pembahasan Barisan Dan Deret Aritmatika Dan


0 Response to "Rumus Deret Aritmatika Dan Geometri"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel